1887

Abstract

The operon, comprising , , , and , is induced dramatically in the transition between exponential growth and stationary phase in rich sporulation medium. The operon is transcribed to produce an unstable long transcript covering the entire operon as well as a short one corresponding to the first three genes. Northern blot analysis revealed that the discrete band corresponding to the short transcript was detectable even 1 h after the addition of excess rifampicin, suggesting its unusual stability. The transcription start site of the operon was determined; its corresponding promoter was most likely sigma-A dependent and under tight control of AbrB and CodY. Within the 5′-proximal region of the transcript preceding , there is a mysterious long sequence triplication (LST) segment, consisting of a tandem repeat of two highly conserved 118 bp units and a less conserved 129 bp unit. This LST segment was not involved in regulation by AbrB and CodY. Transcriptional fusion of the 5′-region containing the LST segment to resulted in a significant increase in -galactosidase synthesis in cells; the LST segment was thought to prevent degradation of the 5′-region– fusion transcript. These results suggest that the 5′-region containing the LST segment could function as an mRNA stabilizer that prolongs the lifetime of the transcript to which it is fused.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036582-0
2010-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1632.html?itemId=/content/journal/micro/10.1099/mic.0.036582-0&mimeType=html&fmt=ahah

References

  1. Agaisse H., Lereclus D. 1996; STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol 20:633–643
    [Google Scholar]
  2. Arnold T. E., Yu J., Belasco J. G. 1998; mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA 4:319–330
    [Google Scholar]
  3. Belitsky B. R., Sonenshein A. L. 2008; Genetic and biochemical analysis of CodY-binding sites in Bacillus subtilis. J Bacteriol 190:1224–1236
    [Google Scholar]
  4. Chen W., Islas-Osuna M. A., Dieckmann C. L. 1999; Suppressor analysis of mutations in the 5′-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae. Genetics 151:1315–1325
    [Google Scholar]
  5. Ermolaeva M. D., Khalak H. G., White O., Smith H. O., Salzberg S. L. 2000; Prediction of transcription terminators in bacterial genomes. J Mol Biol 301:27–33
    [Google Scholar]
  6. Fisher S. H. 1999; Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence. Mol Microbiol 32:223–232
    [Google Scholar]
  7. Hambraeus G., Karhumaa K., Rutberg B. 2002; A 5′ stem–loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology 148:1795–1803
    [Google Scholar]
  8. Hamoen L. W., Kausche D., Marahiel M. A., van Sinderen D., Venema G., Serror P. 2003; The Bacillus subtilis transition state regulator AbrB binds to the –35 promoter region of comK. FEMS Microbiol Lett 218:299–304
    [Google Scholar]
  9. Hamon M. A., Stanley N. R., Britton R. A., Grossman A. D., Lazazzera B. A. 2004; Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52:847–860
    [Google Scholar]
  10. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256
    [Google Scholar]
  11. Miwa Y., Nakata A., Ogiwara A., Yamamoto M., Fujita Y. 2000; Evaluation and characterization of catabolite-responsive elements ( cre) of Bacillus subtilis. Nucleic Acids Res 28:1206–1210
    [Google Scholar]
  12. Molle V., Nakaura Y., Shivers R. P., Yamaguchi H., Losick R., Fujita Y., Sonenshein A. L. 2003; Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 185:1911–1922
    [Google Scholar]
  13. O'Reilly M., Devine K. M. 1997; Expression of AbrB, a transition state regulator from Bacillus subtilis, is growth phase dependent in a manner resembling that of Fis, the nucleoid binding protein from Escherichia coli. J Bacteriol 179:522–529
    [Google Scholar]
  14. Perego M., Spiegelman G. B., Hoch J. A. 1988; Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol Microbiol 2:689–699
    [Google Scholar]
  15. Phillips Z. E., Strauch M. A. 2002; Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol Life Sci 59:392–402
    [Google Scholar]
  16. Ratnayake-Lecamwasam M., Serror P., Wong K. W., Sonenshein A. L. 2001; Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15:1093–1103
    [Google Scholar]
  17. Ruiz-Echevarria M. J., Peltz S. W. 2000; The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101:741–751
    [Google Scholar]
  18. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  19. Schaeffer P., Millet J., Aubert J. P. 1965; Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A 54:704–711
    [Google Scholar]
  20. Serizawa M., Yamamoto H., Yamaguchi H., Fujita Y., Kobayashi K., Ogasawara N., Sekiguchi J. 2004; Systematic analysis of SigD-regulated genes in Bacillus subtilis by DNA microarray and Northern blotting analyses. Gene 329:125–136
    [Google Scholar]
  21. Shimotsu H., Henner D. J. 1986; Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Gene 43:85–94
    [Google Scholar]
  22. Shivers R. P., Sonenshein A. L. 2004; Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol 53:599–611
    [Google Scholar]
  23. Steinmetz M., Richter R. 1994; Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142:79–83
    [Google Scholar]
  24. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104
    [Google Scholar]
  25. Vaughn J. L., Feher V., Naylor S., Strauch M. A., Cavanagh J. 2000; Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator AbrB. Nat Struct Biol 7:1139–1146
    [Google Scholar]
  26. Veiga P., Erkelenz M., Bernard E., Courtin P., Kulakauskas S., Chapot-Chartier M. P. 2009; Identification of the asparagine synthase responsible for d-Asp amidation in the Lactococcus lactis peptidoglycan interpeptide crossbridge. J Bacteriol 191:3752–3757
    [Google Scholar]
  27. Villapakkam A. C., Handke L. D., Belitsky B. R., Levdikov V. M., Wilkinson A. J., Sonenshein A. L. 2009; Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids. J Bacteriol 191:6865–6876
    [Google Scholar]
  28. Xu K., Strauch M. A. 2001; DNA-binding activity of amino-terminal domains of the Bacillus subtilis AbrB protein. J Bacteriol 183:4094–4098
    [Google Scholar]
  29. Yao S., Bechhofer D. H. 2009; Processing and stability of inducibly expressed rpsO mRNA derivatives in Bacillus subtilis. J Bacteriol 191:5680–5689
    [Google Scholar]
  30. Yoshida K., Fujita Y., Sarai A. 1993; Missense mutations in the Bacillus subtilis gnt repressor that diminish operator binding ability. J Mol Biol 231:167–174
    [Google Scholar]
  31. Yoshida K., Seki S., Fujimura M., Miwa Y., Fujita Y. 1995; Cloning and sequencing of a 36-kb region of the Bacillus subtilis genome between the gnt and iol operons. DNA Res 2:61–69
    [Google Scholar]
  32. Yoshida K., Fujita Y., Ehrlich S. D. 1999; Three asparagine synthetase genes of Bacillus subtilis. J Bacteriol 181:6081–6091
    [Google Scholar]
  33. Yoshida K., Ishio I., Nagakawa E., Yamamoto Y., Yamamoto M., Fujita Y. 2000; Systematic study of gene expression and transcription organization in the gntZ–ywaA region of the Bacillus subtilis genome. Microbiology 146:573–579
    [Google Scholar]
  34. Yoshida K., Kobayashi K., Miwa Y., Kang C. M., Matsunaga M., Yamaguchi H., Tojo S., Yamamoto M., Nishi R. other authors 2001; Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29:683–692
    [Google Scholar]
  35. Yoshida K., Yamamoto Y., Omae K., Yamamoto M., Fujita Y. 2002; Identification of two myo-inositol transporter genes of Bacillus subtilis. J Bacteriol 184:983–991
    [Google Scholar]
  36. Yoshida K., Yamaguchi H., Kinehara M., Ohki Y., Nakaura Y., Fujita Y. 2003; Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol Microbiol 49:157–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036582-0
Loading
/content/journal/micro/10.1099/mic.0.036582-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error