1887

Abstract

When presented with certain unfavourable environmental conditions, reticulate bodies (RBs) enter into a viable, yet non-cultivable state called persistence. Previously, we established an and herpes simplex virus type 2 (HSV-2) co-infection model. These data indicate that (i) viral co-infection stimulates chlamydial persistence, (ii) productive HSV replication is not required for persistence induction, and (iii) HSV-induced persistence is not mediated by any currently characterized anti-chlamydial pathway or persistence inducer. In this study we demonstrated that chlamydial infectivity, though initially suppressed, recovered within 44 h of co-infection with UV-inactivated HSV-2, demonstrating that HSV-induced persistence is reversible. Co-incubation of chemically fixed, HSV-2-infected inducer cells with viable, -infected responder cells both suppressed production of infectious chlamydial progeny and stimulated formation of swollen, aberrantly shaped RBs. In addition, pre-incubation of viral particles with viral glycoprotein D (gD)-specific neutralizing antibody prevented co-infection-induced persistence. Finally, exposure of infected cells to a soluble, recombinant HSV-2 gD : Fc fusion protein decreased production of infectious EBs to a degree similar to that observed in co-infected cultures. Thus, we conclude that interaction of HSV gD with the host cell surface is sufficient to trigger a novel host anti-chlamydial response that restricts chlamydial development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036566-0
2010-05-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1294.html?itemId=/content/journal/micro/10.1099/mic.0.036566-0&mimeType=html&fmt=ahah

References

  1. Abdelrahman Y. M., Belland R. J.. 2005; The chlamydial developmental cycle. FEMS Microbiol Rev29:949–959
    [Google Scholar]
  2. Amici C., Rossi A., Costanzo A., Ciafre S., Marinari B., Balsamo M., Levrero M., Santoro M. G.. 2006; Herpes simplex virus disrupts NF- κB regulation by blocking its recruitment on the I κB α promoter and directing the factor on viral genes. J Biol Chem281:7110–7117
    [Google Scholar]
  3. Beatty W. L., Byrne G. I., Morrison R. P.. 1993; Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A90:3998–4002
    [Google Scholar]
  4. Beatty W. L., Belanger T. A., Desai A. A., Morrison R. P., Byrne G. I.. 1994; Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun62:3705–3711
    [Google Scholar]
  5. Bragina E. Y., Gomberg M. A., Dmitriev G. A.. 2001; Electron microscopic evidence of persistent chlamydial infection following treatment. J Eur Acad Dermatol Venereol15:405–409
    [Google Scholar]
  6. Byrne G. I., Lehmann L. K., Landry G. J.. 1986; Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun53:347–351
    [Google Scholar]
  7. Cheshenko N., Del Rosario B., Woda C., Marcellino D., Satlin L. M., Herold B. C.. 2003; Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol163:283–293
    [Google Scholar]
  8. Cocchi F., Menotti L., Mirandola P., Lopez M., Campadelli-Fiume G.. 1998; The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J Virol72:9992–10002
    [Google Scholar]
  9. Dean D., Suchland R. J., Stamm W. E.. 2000; Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis182:909–916
    [Google Scholar]
  10. Deka S., Vanover J., Dessus-Babus S., Whittimore J., Howett M. K., Wyrick P. B., Schoborg R. V.. 2006; Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol8:149–162
    [Google Scholar]
  11. Deka S., Vanover J., Sun J., Kintner J., Whittimore J., Schoborg R. V.. 2007; An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence. Cell Microbiol9:725–737
    [Google Scholar]
  12. Duff R., Rapp F.. 1971; Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J Virol8:469–477
    [Google Scholar]
  13. Fehlner-Gardiner C., Roshick C., Carlson J. H., Hughes S., Belland R. J., Caldwell H. D., McClarty G.. 2002; Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem277:26893–26903
    [Google Scholar]
  14. Fortenberry J. D., Brizendine E. J., Katz B. P., Wools K. K., Blythe M. J., Orr D. P.. 1999; Subsequent sexually transmitted infections among adolescent women with genital infection due to Chlamydia trachomatis, Neisseria gonorrhoeae, or Trichomonas vaginalis. Sex Transm Dis26:26–32
    [Google Scholar]
  15. Fuller A. O., Spear P. G.. 1987; Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion–cell fusion at the cell surface. Proc Natl Acad Sci U S A84:5454–5458
    [Google Scholar]
  16. Fuller A. O., Santos R. E., Spear P. G.. 1989; Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol63:3435–3443
    [Google Scholar]
  17. Gerard H. C., Krausse-Opatz B., Wang Z., Rudy D., Rao J. P., Zeidler H., Schumacher H. R., Whittum-Hudson J. A., Kohler L., Hudson A. P.. 2001; Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Mol Microbiol41:731–741
    [Google Scholar]
  18. Gerard H. C., Wang Z., Whittum-Hudson J. A., El-Gabalawy H., Goldbach-Mansky R., Bardin T., Schumacher H. R., Hudson A. P.. 2002; Cytokine and chemokine mRNA produced in synovial tissue chronically infected with Chlamydia trachomatis and C. pneumoniae. J Rheumatol29:1827–1835
    [Google Scholar]
  19. Granger S. W., Rickert S.. 2003; LIGHT–HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev14:289–296
    [Google Scholar]
  20. Hogan R. J., Mathews S. A., Mukhopadhyay S., Summersgill J. T., Timms P.. 2004; Chlamydial persistence: beyond the biphasic paradigm. Infect Immun72:1843–1855
    [Google Scholar]
  21. Hoppe S., Schelhaas M., Jaeger V., Liebig T., Petermann P., Knebel-Morsdorf D.. 2006; Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J Gen Virol87:3483–3494
    [Google Scholar]
  22. Hsu H., Solovyev I., Colombero A., Elliott R., Kelley M., Boyle W. J.. 1997; ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J Biol Chem272:13471–13474
    [Google Scholar]
  23. Johnson F. W., Hobson D.. 1977; The effect of penicillin on genital strains of Chlamydia trachomatis in tissue culture. J Antimicrob Chemother3:49–56
    [Google Scholar]
  24. Kwon H., Bai Q., Baek H. J., Felmet K., Burton E. A., Goins W. F., Cohen J. B., Glorioso J. C.. 2006; Soluble V domain of nectin-1/HveC enables entry of herpes simplex virus type 1 (HSV-1) into HSV-resistant cells by binding to viral glycoprotein D. J Virol80:138–148
    [Google Scholar]
  25. Marsters S. A., Ayres T. M., Skubatch M., Gray C. L., Rothe M., Ashkenazi A.. 1997; Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF- κB and AP-1. J Biol Chem272:14029–14032
    [Google Scholar]
  26. Matsumoto A., Manire G. P.. 1970; Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J Bacteriol101:278–285
    [Google Scholar]
  27. Mauri D. N., Ebner R., Montgomery R. I., Kochel K. D., Cheung T. C., Yu G. L., Ruben S., Murphy M., Eisenberg R. J.. other authors 1998; LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity8:21–30
    [Google Scholar]
  28. Montgomery R. I., Warner M. S., Lum B. J., Spear P. G.. 1996; Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell87:427–436
    [Google Scholar]
  29. Moxley M. J., Block T. M., Liu H. C., Fraser N. W., Perng G. C., Wechsler S. L., Su Y. H.. 2002; Herpes simplex virus type 1 infection prevents detachment of nerve growth factor-differentiated PC12 cells in culture. J Gen Virol83:1591–1600
    [Google Scholar]
  30. Nakanishi H., Takai Y.. 2004; Roles of nectins in cell adhesion, migration and polarization. Biol Chem385:885–892
    [Google Scholar]
  31. Nanagara R., Li F., Beutler A., Hudson A. Jr. R. S. H 1995; Alteration of Chlamydia trachomatis biologic behavior in synovial membranes. Suppression of surface antigen production in reactive arthritis and Reiter's syndrome. Arthritis Rheum38:1410–1417
    [Google Scholar]
  32. Nelson D. E., Virok D. P., Wood H., Roshick C., Johnson R. M., Whitmire W. M., Crane D. D., Steele-Mortimer O., Kari L.. other authors 2005; Chlamydial IFN- γ immune evasion is linked to host infection tropism. Proc Natl Acad Sci U S A102:10658–10663
    [Google Scholar]
  33. Nicola A. V., Ponce de Leon M., Xu R., Hou W., Whitbeck J. C., Krummenacher C., Montgomery R. I., Spear P. G., Eisenberg R. J., Cohen G. H.. 1998; Monoclonal antibodies to distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to HVEM. J Virol72:3595–3601
    [Google Scholar]
  34. Ogita H., Takai Y.. 2006; Activation of Rap1, Cdc42, and Rac by nectin adhesion system. Methods Enzymol406:415–424
    [Google Scholar]
  35. Parry C., Bell S., Minson T., Browne H.. 2005; Herpes simplex virus type 1 glycoprotein H binds to αv β3 integrins. J Gen Virol86:7–10
    [Google Scholar]
  36. Patton D. L., Askienazy-Elbhar M., Henry-Suchet J., Campbell L. A., Cappuccio A., Tannous W., Wang S. P., Kuo C. C.. 1994; Detection of Chlamydia trachomatis in fallopian tube tissue in women with postinfectious tubal infertility. Am J Obstet Gynecol171:95–101
    [Google Scholar]
  37. Peipert J. F.. 2003; Clinical practice. Genital chlamydial infections. N Engl J Med349:2424–2430
    [Google Scholar]
  38. Roizman B., Knipe D. M.. 2001; Herpes simplex viruses and their replication. Chapter 72 in Field's Virology, 4th edn. pp2399–2459 Edited by Knipe D. M., Howley P. M. Baltimore, MD: Lippincott Williams and Wilkins;
    [Google Scholar]
  39. Satoh T., Arii J., Suenaga T., Wang J., Kogure A., Uehori J., Arase N., Shiratori I., Tanaka S.. other authors 2008; PILR α is a herpes simplex virus-1 entry co-receptor that associates with glycoprotein B. Cell132:935–944
    [Google Scholar]
  40. Savage C. O., Hughes C. C., Pepinsky R. B., Wallner B. P., Freedman A. S., Pober J. S.. 1991; Endothelial cell lymphocyte function-associated antigen-3 and an unidentified ligand act in concert to provide costimulation to human peripheral blood CD4+ T cells. Cell Immunol137:150–163
    [Google Scholar]
  41. Sciortino M. T., Medici M. A., Marino-Merlo F., Zaccaria D., Giuffre M., Venuti A., Grelli S., Mastino A.. 2007; Signaling pathway used by HSV-1 to induce NF- κB activation: possible role of herpes virus entry receptor A. Ann N Y Acad Sci1096:89–96
    [Google Scholar]
  42. Sciortino M. T., Medici M. A., Marino-Merlo F., Zaccaria D., Giuffrè-Cuculletto M., Venuti A., Grelli S., Bramanti P., Mastino A.. 2008; Involvement of gD/HVEM interaction in NF- κB-dependent inhibition of apoptosis by HSV-1 gD. Biochem Pharmacol76:1522–1532
    [Google Scholar]
  43. Shimizu K., Takai Y.. 2003; Roles of the intercellular adhesion molecule nectin in intracellular signaling. J Biochem134:631–636
    [Google Scholar]
  44. Shukla D., Liu J., Blaiklock P., Shworak N. W., Bai X., Esko J. D., Cohen G. H., Eisenberg R. J., Rosenberg R. D., Spear P. G.. 1999; A novel role for 3- O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell99:13–22
    [Google Scholar]
  45. Spear P. G.. 2004; Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol6:401–410
    [Google Scholar]
  46. Vanover J., Sun J., Deka S., Kintner J., Duffourc M. M., Schoborg R. V.. 2008; Herpes simplex virus co-infection-induced Chlamydia trachomatis persistence is not mediated by any known persistence inducer or anti-chlamydial pathway. Microbiology154:971–978
    [Google Scholar]
  47. Wyrick P. B., Choong J., Knight S. T., Goyeau D., Stuart E. S., MacDonald A. B.. 1994; Chlamydia trachomatis antigens on the surface of infected human endometrial epithelial cells. Immunol Infect Dis4:131–141
    [Google Scholar]
  48. Wyrick P. B. Jr, G. G. D Knight S. T., Raulston J. E.. 1996; Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads. Microb Pathog20:31–40
    [Google Scholar]
  49. Yoon M., Zago A., Shukla D., Spear P. G.. 2003; Mutations in the N termini of herpes simplex virus type 1 and 2 gDs alter functional interactions with the entry/fusion receptors HVEM, nectin-2, and 3- O-sulfated heparan sulfate but not with nectin-1. J Virol77:9221–9231
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036566-0
Loading
/content/journal/micro/10.1099/mic.0.036566-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error