1887

Abstract

When presented with certain unfavourable environmental conditions, reticulate bodies (RBs) enter into a viable, yet non-cultivable state called persistence. Previously, we established an and herpes simplex virus type 2 (HSV-2) co-infection model. These data indicate that (i) viral co-infection stimulates chlamydial persistence, (ii) productive HSV replication is not required for persistence induction, and (iii) HSV-induced persistence is not mediated by any currently characterized anti-chlamydial pathway or persistence inducer. In this study we demonstrated that chlamydial infectivity, though initially suppressed, recovered within 44 h of co-infection with UV-inactivated HSV-2, demonstrating that HSV-induced persistence is reversible. Co-incubation of chemically fixed, HSV-2-infected inducer cells with viable, -infected responder cells both suppressed production of infectious chlamydial progeny and stimulated formation of swollen, aberrantly shaped RBs. In addition, pre-incubation of viral particles with viral glycoprotein D (gD)-specific neutralizing antibody prevented co-infection-induced persistence. Finally, exposure of infected cells to a soluble, recombinant HSV-2 gD : Fc fusion protein decreased production of infectious EBs to a degree similar to that observed in co-infected cultures. Thus, we conclude that interaction of HSV gD with the host cell surface is sufficient to trigger a novel host anti-chlamydial response that restricts chlamydial development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036566-0
2010-05-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1294.html?itemId=/content/journal/micro/10.1099/mic.0.036566-0&mimeType=html&fmt=ahah

References

  1. Abdelrahman, Y. M. & Belland, R. J. ( 2005; ). The chlamydial developmental cycle. FEMS Microbiol Rev 29, 949–959.[CrossRef]
    [Google Scholar]
  2. Amici, C., Rossi, A., Costanzo, A., Ciafre, S., Marinari, B., Balsamo, M., Levrero, M. & Santoro, M. G. ( 2006; ). Herpes simplex virus disrupts NF-κB regulation by blocking its recruitment on the IκBα promoter and directing the factor on viral genes. J Biol Chem 281, 7110–7117.[CrossRef]
    [Google Scholar]
  3. Beatty, W. L., Byrne, G. I. & Morrison, R. P. ( 1993; ). Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A 90, 3998–4002.[CrossRef]
    [Google Scholar]
  4. Beatty, W. L., Belanger, T. A., Desai, A. A., Morrison, R. P. & Byrne, G. I. ( 1994; ). Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 62, 3705–3711.
    [Google Scholar]
  5. Bragina, E. Y., Gomberg, M. A. & Dmitriev, G. A. ( 2001; ). Electron microscopic evidence of persistent chlamydial infection following treatment. J Eur Acad Dermatol Venereol 15, 405–409.[CrossRef]
    [Google Scholar]
  6. Byrne, G. I., Lehmann, L. K. & Landry, G. J. ( 1986; ). Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun 53, 347–351.
    [Google Scholar]
  7. Cheshenko, N., Del Rosario, B., Woda, C., Marcellino, D., Satlin, L. M. & Herold, B. C. ( 2003; ). Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol 163, 283–293.[CrossRef]
    [Google Scholar]
  8. Cocchi, F., Menotti, L., Mirandola, P., Lopez, M. & Campadelli-Fiume, G. ( 1998; ). The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J Virol 72, 9992–10002.
    [Google Scholar]
  9. Dean, D., Suchland, R. J. & Stamm, W. E. ( 2000; ). Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis 182, 909–916.[CrossRef]
    [Google Scholar]
  10. Deka, S., Vanover, J., Dessus-Babus, S., Whittimore, J., Howett, M. K., Wyrick, P. B. & Schoborg, R. V. ( 2006; ). Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol 8, 149–162.[CrossRef]
    [Google Scholar]
  11. Deka, S., Vanover, J., Sun, J., Kintner, J., Whittimore, J. & Schoborg, R. V. ( 2007; ). An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence. Cell Microbiol 9, 725–737.[CrossRef]
    [Google Scholar]
  12. Duff, R. & Rapp, F. ( 1971; ). Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J Virol 8, 469–477.
    [Google Scholar]
  13. Fehlner-Gardiner, C., Roshick, C., Carlson, J. H., Hughes, S., Belland, R. J., Caldwell, H. D. & McClarty, G. ( 2002; ). Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem 277, 26893–26903.[CrossRef]
    [Google Scholar]
  14. Fortenberry, J. D., Brizendine, E. J., Katz, B. P., Wools, K. K., Blythe, M. J. & Orr, D. P. ( 1999; ). Subsequent sexually transmitted infections among adolescent women with genital infection due to Chlamydia trachomatis, Neisseria gonorrhoeae, or Trichomonas vaginalis. Sex Transm Dis 26, 26–32.[CrossRef]
    [Google Scholar]
  15. Fuller, A. O. & Spear, P. G. ( 1987; ). Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion–cell fusion at the cell surface. Proc Natl Acad Sci U S A 84, 5454–5458.[CrossRef]
    [Google Scholar]
  16. Fuller, A. O., Santos, R. E. & Spear, P. G. ( 1989; ). Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol 63, 3435–3443.
    [Google Scholar]
  17. Gerard, H. C., Krausse-Opatz, B., Wang, Z., Rudy, D., Rao, J. P., Zeidler, H., Schumacher, H. R., Whittum-Hudson, J. A., Kohler, L. & Hudson, A. P. ( 2001; ). Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Mol Microbiol 41, 731–741.[CrossRef]
    [Google Scholar]
  18. Gerard, H. C., Wang, Z., Whittum-Hudson, J. A., El-Gabalawy, H., Goldbach-Mansky, R., Bardin, T., Schumacher, H. R. & Hudson, A. P. ( 2002; ). Cytokine and chemokine mRNA produced in synovial tissue chronically infected with Chlamydia trachomatis and C. pneumoniae. J Rheumatol 29, 1827–1835.
    [Google Scholar]
  19. Granger, S. W. & Rickert, S. ( 2003; ). LIGHT–HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev 14, 289–296.[CrossRef]
    [Google Scholar]
  20. Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T. & Timms, P. ( 2004; ). Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72, 1843–1855.[CrossRef]
    [Google Scholar]
  21. Hoppe, S., Schelhaas, M., Jaeger, V., Liebig, T., Petermann, P. & Knebel-Morsdorf, D. ( 2006; ). Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J Gen Virol 87, 3483–3494.[CrossRef]
    [Google Scholar]
  22. Hsu, H., Solovyev, I., Colombero, A., Elliott, R., Kelley, M. & Boyle, W. J. ( 1997; ). ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J Biol Chem 272, 13471–13474.[CrossRef]
    [Google Scholar]
  23. Johnson, F. W. & Hobson, D. ( 1977; ). The effect of penicillin on genital strains of Chlamydia trachomatis in tissue culture. J Antimicrob Chemother 3, 49–56.[CrossRef]
    [Google Scholar]
  24. Kwon, H., Bai, Q., Baek, H. J., Felmet, K., Burton, E. A., Goins, W. F., Cohen, J. B. & Glorioso, J. C. ( 2006; ). Soluble V domain of nectin-1/HveC enables entry of herpes simplex virus type 1 (HSV-1) into HSV-resistant cells by binding to viral glycoprotein D. J Virol 80, 138–148.[CrossRef]
    [Google Scholar]
  25. Marsters, S. A., Ayres, T. M., Skubatch, M., Gray, C. L., Rothe, M. & Ashkenazi, A. ( 1997; ). Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-κB and AP-1. J Biol Chem 272, 14029–14032.[CrossRef]
    [Google Scholar]
  26. Matsumoto, A. & Manire, G. P. ( 1970; ). Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J Bacteriol 101, 278–285.
    [Google Scholar]
  27. Mauri, D. N., Ebner, R., Montgomery, R. I., Kochel, K. D., Cheung, T. C., Yu, G. L., Ruben, S., Murphy, M., Eisenberg, R. J. & other authors ( 1998; ). LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 8, 21–30.[CrossRef]
    [Google Scholar]
  28. Montgomery, R. I., Warner, M. S., Lum, B. J. & Spear, P. G. ( 1996; ). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427–436.[CrossRef]
    [Google Scholar]
  29. Moxley, M. J., Block, T. M., Liu, H. C., Fraser, N. W., Perng, G. C., Wechsler, S. L. & Su, Y. H. ( 2002; ). Herpes simplex virus type 1 infection prevents detachment of nerve growth factor-differentiated PC12 cells in culture. J Gen Virol 83, 1591–1600.
    [Google Scholar]
  30. Nakanishi, H. & Takai, Y. ( 2004; ). Roles of nectins in cell adhesion, migration and polarization. Biol Chem 385, 885–892.
    [Google Scholar]
  31. Nanagara, R., Li, F., Beutler, A., Hudson, A. & Jr, R. S. H. ( 1995; ). Alteration of Chlamydia trachomatis biologic behavior in synovial membranes. Suppression of surface antigen production in reactive arthritis and Reiter's syndrome. Arthritis Rheum 38, 1410–1417.[CrossRef]
    [Google Scholar]
  32. Nelson, D. E., Virok, D. P., Wood, H., Roshick, C., Johnson, R. M., Whitmire, W. M., Crane, D. D., Steele-Mortimer, O., Kari, L. & other authors ( 2005; ). Chlamydial IFN-γ immune evasion is linked to host infection tropism. Proc Natl Acad Sci U S A 102, 10658–10663.[CrossRef]
    [Google Scholar]
  33. Nicola, A. V., Ponce de Leon, M., Xu, R., Hou, W., Whitbeck, J. C., Krummenacher, C., Montgomery, R. I., Spear, P. G., Eisenberg, R. J. & Cohen, G. H. ( 1998; ). Monoclonal antibodies to distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to HVEM. J Virol 72, 3595–3601.
    [Google Scholar]
  34. Ogita, H. & Takai, Y. ( 2006; ). Activation of Rap1, Cdc42, and Rac by nectin adhesion system. Methods Enzymol 406, 415–424.
    [Google Scholar]
  35. Parry, C., Bell, S., Minson, T. & Browne, H. ( 2005; ). Herpes simplex virus type 1 glycoprotein H binds to αvβ3 integrins. J Gen Virol 86, 7–10.[CrossRef]
    [Google Scholar]
  36. Patton, D. L., Askienazy-Elbhar, M., Henry-Suchet, J., Campbell, L. A., Cappuccio, A., Tannous, W., Wang, S. P. & Kuo, C. C. ( 1994; ). Detection of Chlamydia trachomatis in fallopian tube tissue in women with postinfectious tubal infertility. Am J Obstet Gynecol 171, 95–101.[CrossRef]
    [Google Scholar]
  37. Peipert, J. F. ( 2003; ). Clinical practice. Genital chlamydial infections. N Engl J Med 349, 2424–2430.[CrossRef]
    [Google Scholar]
  38. Roizman, B. & Knipe, D. M. ( 2001; ). Herpes simplex viruses and their replication. Chapter 72 in Field's Virology, 4th edn, pp. 2399–2459. Edited by D. M. Knipe & P. M. Howley. Baltimore, MD: Lippincott Williams and Wilkins.
  39. Satoh, T., Arii, J., Suenaga, T., Wang, J., Kogure, A., Uehori, J., Arase, N., Shiratori, I., Tanaka, S. & other authors ( 2008; ). PILRα is a herpes simplex virus-1 entry co-receptor that associates with glycoprotein B. Cell 132, 935–944.[CrossRef]
    [Google Scholar]
  40. Savage, C. O., Hughes, C. C., Pepinsky, R. B., Wallner, B. P., Freedman, A. S. & Pober, J. S. ( 1991; ). Endothelial cell lymphocyte function-associated antigen-3 and an unidentified ligand act in concert to provide costimulation to human peripheral blood CD4+ T cells. Cell Immunol 137, 150–163.[CrossRef]
    [Google Scholar]
  41. Sciortino, M. T., Medici, M. A., Marino-Merlo, F., Zaccaria, D., Giuffre, M., Venuti, A., Grelli, S. & Mastino, A. ( 2007; ). Signaling pathway used by HSV-1 to induce NF-κB activation: possible role of herpes virus entry receptor A. Ann N Y Acad Sci 1096, 89–96.[CrossRef]
    [Google Scholar]
  42. Sciortino, M. T., Medici, M. A., Marino-Merlo, F., Zaccaria, D., Giuffrè-Cuculletto, M., Venuti, A., Grelli, S., Bramanti, P. & Mastino, A. ( 2008; ). Involvement of gD/HVEM interaction in NF-κB-dependent inhibition of apoptosis by HSV-1 gD. Biochem Pharmacol 76, 1522–1532.[CrossRef]
    [Google Scholar]
  43. Shimizu, K. & Takai, Y. ( 2003; ). Roles of the intercellular adhesion molecule nectin in intracellular signaling. J Biochem 134, 631–636.[CrossRef]
    [Google Scholar]
  44. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X., Esko, J. D., Cohen, G. H., Eisenberg, R. J., Rosenberg, R. D. & Spear, P. G. ( 1999; ). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13–22.[CrossRef]
    [Google Scholar]
  45. Spear, P. G. ( 2004; ). Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6, 401–410.[CrossRef]
    [Google Scholar]
  46. Vanover, J., Sun, J., Deka, S., Kintner, J., Duffourc, M. M. & Schoborg, R. V. ( 2008; ). Herpes simplex virus co-infection-induced Chlamydia trachomatis persistence is not mediated by any known persistence inducer or anti-chlamydial pathway. Microbiology 154, 971–978.[CrossRef]
    [Google Scholar]
  47. Wyrick, P. B., Choong, J., Knight, S. T., Goyeau, D., Stuart, E. S. & MacDonald, A. B. ( 1994; ). Chlamydia trachomatis antigens on the surface of infected human endometrial epithelial cells. Immunol Infect Dis 4, 131–141.
    [Google Scholar]
  48. Wyrick, P. B., Jr, G. G. D., Knight, S. T. & Raulston, J. E. ( 1996; ). Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads. Microb Pathog 20, 31–40.[CrossRef]
    [Google Scholar]
  49. Yoon, M., Zago, A., Shukla, D. & Spear, P. G. ( 2003; ). Mutations in the N termini of herpes simplex virus type 1 and 2 gDs alter functional interactions with the entry/fusion receptors HVEM, nectin-2, and 3-O-sulfated heparan sulfate but not with nectin-1. J Virol 77, 9221–9231.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036566-0
Loading
/content/journal/micro/10.1099/mic.0.036566-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error