1887

Abstract

The signal recognition particle (SRP) is a ribonucleoprotein complex that targets proteins for secretion in a co-translational manner. While originally thought to be essential in all bacteria, recent data show that the SRP is dispensable in at least some streptococcal species. The SRP from the human pathogen group A (GAS, ) is predicted to be composed of protein Ffh and 4.5S RNA. Deletion of alters the secretion of several GAS proteins, and leads to a severe reduction in virulence. Here, we report that mutation of the gene encoding 4.5S RNA results in phenotypes both similar to and distinct from that observed following mutation. Similarities include a reduction in secretion of the haemolysin streptolysin O, and attenuation of virulence as assessed by a murine soft tissue infection model. Differences include a reduction in transcript levels for the genes encoding streptolysin O and NAD-glycohydrolase, and the reduced secretion of the SpeB protease. Several differences in transcript abundance between the parental and mutant strain were shown to be dependent on the sensor-kinase-encoding gene . Using growth in human saliva as an model of upper respiratory tract infection we identified that 4.5S RNA mutation leads to a 10-fold reduction in colony-forming units over time, consistent with the 4.5S RNA contributing to GAS growth and persistence during upper respiratory tract infections. Finally, we determined that the 4.5S RNA was essential for GAS to cause lethal infections in a murine bacteraemia model of infection. The data presented extend our knowledge of the contribution of the SRP to the virulence of an important Gram-positive pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036558-0
2010-05-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1342.html?itemId=/content/journal/micro/10.1099/mic.0.036558-0&mimeType=html&fmt=ahah

References

  1. Bernish B., van de Rijn I.. 1999; Characterization of a two-component system in Streptococcus pyogenes which is involved in regulation of hyaluronic acid production. J Biol Chem274:4786–4793
    [Google Scholar]
  2. Binks M. J., Fernie-King B. A., Seilly D. J., Lachmann P. J., Sriprakash K. S.. 2005; Attribution of the various inhibitory actions of the streptococcal inhibitor of complement (SIC) to regions within the molecule. J Biol Chem280:20120–20125
    [Google Scholar]
  3. Bradshaw N., Walter P.. 2007; The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting. Mol Biol Cell18:2728–2734
    [Google Scholar]
  4. Bradshaw N., Neher S. B., Booth D. S., Walter P.. 2009; Signal sequences activate the catalytic switch of SRP RNA. Science323:127–130
    [Google Scholar]
  5. Chaffin D. O., Rubens C. E.. 1998; Blue/white screening of recombinant plasmids in Gram-positive bacteria by interruption of alkaline phosphatase gene ( phoZ) expression. Gene219:91–99
    [Google Scholar]
  6. Cunningham M. W.. 2000; Pathogenesis of group A streptococcal infections. Clin Microbiol Rev13:470–511
    [Google Scholar]
  7. De Buck E., Lammertyn E., Anné J.. 2008; The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol16:442–453
    [Google Scholar]
  8. Dilks K., Rose R. W., Hartmann E., Pohlschroder M.. 2003; Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol185:1478–1483
    [Google Scholar]
  9. Egesten A., Olin A. I., Linge H. M., Yadav M., Morgelin M., Karlsson A., Collin M.. 2009; SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One4:e4769
    [Google Scholar]
  10. Engleberg N. C., Heath A., Miller A., Rivera C., DiRita V. J.. 2001; Spontaneous mutations in the CsrRS two-component regulatory system of Streptococcus pyogenes result in enhanced virulence in a murine model of skin and soft tissue infection. J Infect Dis183:1043–1054
    [Google Scholar]
  11. Federle M. J., McIver K. S., Scott J. R.. 1999; A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol181:3649–3657
    [Google Scholar]
  12. Funes S., Hasona A., Bauerschmitt H., Grubbauer C., Kauff F., Collins R., Crowley P. J., Palmer S. R., Brady L. J., Herrmann J. M.. 2009; Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. Proc Natl Acad Sci U S A106:6656–6661
    [Google Scholar]
  13. Graham M. R., Virtaneva K., Porcella S. F., Gardner D. J., Long R. D., Welty D. M., Barry W. T., Johnson C. A., Parkins L. D.. 2006; Analysis of the transcriptome of group A Streptococcus in mouse soft tissue infection. Am J Pathol169:927–942
    [Google Scholar]
  14. Gryllos I., Tran-Winkler H. J., Cheng M. F., Chung H., Bolcome R. III, Lu W., Lehrer R. I., Wessels M. R.. 2008; Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc Natl Acad Sci U S A105:16755–16760
    [Google Scholar]
  15. Hamburger M. Jr, Robertson O. H.. 1948; Expulsion of group A hemolytic streptococci in droplets and droplet nuclei by sneezing, coughing and talking. Am J Med4:690–701
    [Google Scholar]
  16. Hasona A., Crowley P. J., Levesque C. M., Mair R. W., Cvitkovitch D. G., Bleiweis A. S., Brady L. J.. 2005; Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci U S A102:17466–17471
    [Google Scholar]
  17. Hasona A., Zuobi-Hasona K., Crowley P. J., Abranches J., Ruelf M. A., Bleiweis A. S., Brady L. J.. 2007; Membrane composition changes and physiological adaptation by Streptococcus mutans signal recognition particle pathway mutants. J Bacteriol189:1219–1230
    [Google Scholar]
  18. Herskovits A. A., Bochkareva E. S., Bibi E.. 2000; New prospects in studying the bacterial signal recognition particle pathway. Mol Microbiol38:927–939
    [Google Scholar]
  19. Katzenell U., Shemer J., Bar-Dayan Y.. 2001; Streptococcal contamination of food: an unusual cause of epidemic pharyngitis. Epidemiol Infect127:179–184
    [Google Scholar]
  20. Kremer B. H., van der Kraan M., Crowley P. J., Hamilton I. R., Brady L. J., Bleiweis A. S.. 2001; Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J Bacteriol183:2543–2552
    [Google Scholar]
  21. Levin J. C., Wessels M. R.. 1998; Identification of csrR/ csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol Microbiol30:209–219
    [Google Scholar]
  22. Lukomski S., Nakashima K., Abdi I., Cipriano V. J., Ireland R. M., Reid S. D., Adams G. G., Musser J. M.. 2000; Identification and characterization of the scl gene encoding a group A Streptococcus extracellular protein virulence factor with similarity to human collagen. Infect Immun68:6542–6553
    [Google Scholar]
  23. Meehl M. A., Pinkner J. S., Anderson P. J., Hultgren S. J., Caparon M. G.. 2005; A novel endogenous inhibitor of the secreted streptococcal NAD-glycohydrolase. PLoS Pathog1:e35
    [Google Scholar]
  24. Nakamura K., Imai Y., Nakamura A., Yamane K.. 1992; Small cytoplasmic RNA of Bacillus subtilis: functional relationship with human signal recognition particle 7S RNA and Escherichia coli 4.5S RNA. J Bacteriol174:2185–2192
    [Google Scholar]
  25. Nyberg P., Rasmussen M., Bjorck L.. 2004; α2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem279:52820–52823
    [Google Scholar]
  26. Olsen R. J., Shelburne S. A., Musser J. M.. 2009; Molecular mechanisms underlying group A streptococcal pathogenesis. Cell Microbiol11:1–12
    [Google Scholar]
  27. Perez N., Trevino J., Liu Z., Ho S. C. M., Babitzke P., Sumby P.. 2009; A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus. PLoS One4:e7668
    [Google Scholar]
  28. Pohlschroder M., Hartmann E., Hand N. J., Dilks K., Haddad A.. 2005; Diversity and evolution of protein translocation. Annu Rev Microbiol59:91–111
    [Google Scholar]
  29. Powers T., Walter P.. 1995; Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science269:1422–1424
    [Google Scholar]
  30. Reid S. D., Virtaneva K., Musser J. M.. 2003; Group A Streptococcus vaccine research: historical synopsis and new insights. In Bacterial Vaccines pp155–173 Edited by Ellis R. W., Brodeur B. R. Georgetown, TX: Landes Bioscience;
  31. Rosch J. W., Caparon M. G.. 2005; The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes. Mol Microbiol58:959–968
    [Google Scholar]
  32. Rosch J. W., Hsu F. F., Caparon M. G.. 2007; Anionic lipids enriched at the ExPortal of Streptococcus pyogenes. J Bacteriol189:801–806
    [Google Scholar]
  33. Rosch J. W., Vega L. A., Beyer J. M., Lin A., Caparon M. G.. 2008; The signal recognition particle pathway is required for virulence in Streptococcus pyogenes. Infect Immun76:2612–2619
    [Google Scholar]
  34. Russell H. H., Sriskandan S.. 2008; Superantigens SPEA and SMEZ do not affect secretome expression in Streptococcus pyogenes. Microb Pathog44:537–543
    [Google Scholar]
  35. Shelburne S. A. III, Granville C., Tokuyama M., Sitkiewicz I., Patel P., Musser J. M.. 2005a; Growth characteristics of and virulence factor production by group A Streptococcus during cultivation in human saliva. Infect Immun73:4723–4731
    [Google Scholar]
  36. Shelburne S. A. III, Sumby P., Sitkiewicz I., Granville C., DeLeo F. R., Musser J. M.. 2005b; Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. Proc Natl Acad Sci U S A102:16037–16042
    [Google Scholar]
  37. Shelburne S. A. III, Sumby P., Sitkiewicz I., Okorafor N., Granville C., Patel P., Voyich J., Hull R., DeLeo F. R., Musser J. M.. 2006; Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infect Immun74:4605–4614
    [Google Scholar]
  38. Shelburne S. A. III, Keith D., Horstmann N., Sumby P., Davenport M. T., Graviss E. A., Brennan R. G., Musser J. M.. 2008; A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci U S A105:1698–1703
    [Google Scholar]
  39. Struck J. C., Hartmann R. K., Toschka H. Y., Erdmann V. A.. 1989; Transcription and processing of Bacillus subtilis small cytoplasmic RNA. Mol Gen Genet215:478–482
    [Google Scholar]
  40. Sumby P., Barbian K. D., Gardner D. J., Whitney A. R., Welty D. M., Long R. D., Bailey J. R., Parnell M. J., Hoe N. P.. other authors 2005a; Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A102:1679–1684
    [Google Scholar]
  41. Sumby P., Porcella S. F., Madrigal A. G., Barbian K. D., Virtaneva K., Ricklefs S. M., Sturdevant D. E., Graham M. R., Vuopio-Varkila J.. other authors 2005b; Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis192:771–782
    [Google Scholar]
  42. Sumby P., Whitney A. R., Graviss E. A., DeLeo F. R., Musser J. M.. 2006; Genome-wide analysis of group A streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog2:e5
    [Google Scholar]
  43. Sumby P., Zhang S., Whitney A. R., Falugi F., Grandi G., Graviss E. A., Deleo F. R., Musser J. M.. 2008; A chemokine-degrading extracellular protease made by group A Streptococcus alters pathogenesis by enhancing evasion of the innate immune response. Infect Immun76:978–985
    [Google Scholar]
  44. Timmer A. M., Timmer J. C., Pence M. A., Hsu L. C., Ghochani M., Frey T. G., Karin M., Salvesen G. S., Nizet V.. 2009; Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem284:862–871
    [Google Scholar]
  45. Trevino J., Perez N., Ramirez-Pena E., Liu Z., Shelburne S. A. III, Musser J. M., Sumby P.. 2009; CovS simultaneously activates and inhibits the CovR-mediated repression of distinct subsets of group A Streptococcus virulence factor-encoding genes. Infect Immun77:3141–3149
    [Google Scholar]
  46. Virtaneva K., Graham M. R., Porcella S. F., Hoe N. P., Su H., Graviss E. A., Gardner T. J., Allison J. E., Lemon W. J.. other authors 2003; Group A Streptococcus gene expression in humans and cynomolgus macaques with acute pharyngitis. Infect Immun71:2199–2207
    [Google Scholar]
  47. Yamane K., Bunai K., Kakeshita H.. 2004; Protein traffic for secretion and related machinery of Bacillus subtilis. Biosci Biotechnol Biochem68:2007–2023
    [Google Scholar]
  48. Zanen G., Antelmann H., Meima R., Jongbloed J. D., Kolkman M., Hecker M., van Dijl J. M., Quax W. J.. 2006; Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics6:3636–3648
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036558-0
Loading
/content/journal/micro/10.1099/mic.0.036558-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error