1887

Abstract

The G5 subunit has been shown to reduce cell viability, inhibit folate chemotaxis and accelerate tip morphogenesis and gene expression during multicellular development. Alteration of the D-motif (mitogen-activated protein kinase docking site) at the amino terminus of the G5 subunit or the loss of extracellular signal-regulated kinase (ERK)1 diminished the lethality associated with the overexpression or constitutive activation of the G5 subunit. The amino-terminal D-motif of the G5 subunit was also found to be necessary for the reduced cell size, small aggregate formation and precocious developmental gene expression associated with G5 subunit overexpression. This D-motif also contributed to the aggregation delay in cells expressing a constitutively active G5 subunit, but the D-motif was not necessary for the inhibition of folate chemotaxis. These results suggest that the amino-terminal D-motif is required for some but not all phenotypes associated with elevated G5 subunit functions during growth and development and that ERK1 can function in G5 subunit-mediated signal transduction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036541-0
2010-03-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/789.html?itemId=/content/journal/micro/10.1099/mic.0.036541-0&mimeType=html&fmt=ahah

References

  1. Albert P. R., Robillard L.. 2002; G protein specificity: traffic direction required. Cell Signal14:407–418
    [Google Scholar]
  2. Arnold K., Bordoli L., Kopp J., Schwede T.. 2006; The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics22:195–201
    [Google Scholar]
  3. Aubry L., Firtel R.. 1999; Integration of signaling networks that regulate Dictyostelium differentiation. Annu Rev Cell Dev Biol15:469–517
    [Google Scholar]
  4. Blackwell E., Halatek I. M., Kim H. J., Ellicott A. T., Obukhov A. A., Stone D. E.. 2003; Effect of the pheromone-responsive G(alpha) and phosphatase proteins of Saccharomyces cerevisiae on the subcellular localization of the Fus3 mitogen-activated protein kinase. Mol Cell Biol23:1135–1150
    [Google Scholar]
  5. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  6. Brzostowski J. A., Kimmel A. R.. 2006; Nonadaptive regulation of ERK2 in Dictyostelium: implications for mechanisms of cAMP relay. Mol Biol Cell17:4220–4227
    [Google Scholar]
  7. Caunt C. J., Finch A. R., Sedgley K. R., McArdle C. A.. 2006; Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol Metab17:276–283
    [Google Scholar]
  8. Feinberg A. P., Vogelstein B.. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem132:6–13
    [Google Scholar]
  9. Firtel R. A.. 1996; Interacting signaling pathways controlling multicellular development in Dictyostelium. Curr Opin Genet Dev. 6545–554
  10. Firtel R. A., van Haastert P. J., Kimmel A. R., Devreotes P. N.. 1989; G protein linked signal transduction pathways in development: Dictyostelium as an experimental system. Cell58:235–239
    [Google Scholar]
  11. Gaskins C., Maeda M., Firtel R. A.. 1994; Identification and functional analysis of a developmentally regulated extracellular signal-regulated kinase gene in Dictyostelium discoideum. Mol Cell Biol14:6996–7012
    [Google Scholar]
  12. Goldberg J. M., Manning G., Liu A., Fey P., Pilcher K. E., Xu Y., Smith J. L.. 2006; The dictyostelium kinome – analysis of the protein kinases from a simple model organism. PLoS Genet2:e38
    [Google Scholar]
  13. Grewal S., Molina D. M., Bardwell L.. 2006; Mitogen-activated protein kinase (MAPK)-docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo. Cell Signal18:123–134
    [Google Scholar]
  14. Hadwiger J. A.. 2007; Developmental morphology and chemotactic responses are dependent on G alpha subunit specificity in Dictyostelium. Dev Biol312:1–12
    [Google Scholar]
  15. Hadwiger J. A., Natarajan K., Firtel R. A.. 1996; Mutations in the Dictyostelium heterotrimeric G protein α subunit G α5 alter the kinetics of tip morphogenesis. Development122:1215–1224
    [Google Scholar]
  16. Hildebrandt J. D.. 1997; Role of subunit diversity in signaling by heterotrimeric G proteins. Biochem Pharmacol54:325–339
    [Google Scholar]
  17. Holbrook S. R., Kim S. H.. 1989; Molecular model of the G protein alpha subunit based on the crystal structure of the HRAS protein. Proc Natl Acad Sci U S A86:1751–1755
    [Google Scholar]
  18. Hopper N. A., Sanders G. M., Fosnaugh K. L., Williams J. G., Loomis W. F.. 1995; Protein kinase A is a positive regulator of spore coat gene transcription in Dictyostelium. Differentiation58:183–188
    [Google Scholar]
  19. Hur E. M., Kim K. T.. 2002; G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal14:397–405
    [Google Scholar]
  20. Knetsch M. L., Epskamp S. J., Schenk P. W., Wang Y., Segall J. E., Snaar-Jagalska B. E.. 1996; Dual role of cAMP and involvement of both G-proteins and ras in regulation of ERK2 in Dictyostelium discoideum. EMBO J15:3361–3368
    [Google Scholar]
  21. Landry Y., Gies J. P.. 2002; Heterotrimeric G proteins control diverse pathways of transmembrane signaling, a base for drug discovery. Mini Rev Med Chem2:361–372
    [Google Scholar]
  22. Levi S., Polyakov M., Egelhoff T. T.. 2000; Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid44:231–238
    [Google Scholar]
  23. Maeda M., Firtel R. A.. 1997; Activation of the mitogen-activated protein kinase ERK2 by the chemoattractant folic acid in Dictyostelium. J Biol Chem272:23690–23695
    [Google Scholar]
  24. Maeda M., Aubry L., Insall R., Gaskins C., Devreotes P. N., Firtel R. A.. 1996; Seven helix chemoattractant receptors transiently stimulate mitogen-activated protein kinase in Dictyostelium – role of heterotrimeric G proteins. J Biol Chem271:3351–3354
    [Google Scholar]
  25. Maeda M., Lu S., Shaulsky G., Miyazaki Y., Kuwayama H., Tanaka Y., Kuspa A., Loomis W. F.. 2004; Periodic signaling controlled by an oscillatory circuit that includes protein kinases ERK2 and PKA. Science304:875–878
    [Google Scholar]
  26. Mann S. K., Firtel R. A.. 1993; cAMP-dependent protein kinase differentially regulates prestalk and prespore differentiation during Dictyostelium development. Development119:135–146
    [Google Scholar]
  27. Mann S. K., Richardson D. L., Lee S., Kimmel A. R., Firtel R. A.. 1994; Expression of cAMP-dependent protein kinase in prespore cells is sufficient to induce spore cell differentiation in Dictyostelium. Proc Natl Acad Sci U S A91:10561–10565
    [Google Scholar]
  28. Metodiev M. V., Matheos D., Rose M. D., Stone D. E.. 2002; Regulation of MAPK function by direct interaction with the mating-specific G α in yeast. Science296:1483–1486
    [Google Scholar]
  29. Milligan G., Kostenis E.. 2006; Heterotrimeric G-proteins: a short history. Br J Pharmacol147:Suppl. 1S46–S55
    [Google Scholar]
  30. Miranda-Saavedra D., Barton G. J.. 2007; Classification and functional annotation of eukaryotic protein kinases. Proteins68:893–914
    [Google Scholar]
  31. Natarajan K., Ashley C. A., Hadwiger J. A.. 2000; Related G α subunits play opposing roles during Dictyostelium development. Differentiation66:136–146
    [Google Scholar]
  32. Neves S. R., Ram P. T., Iyengar R.. 2002; G protein pathways. Science296:1636–1639
    [Google Scholar]
  33. Nguyen H. N., Hadwiger J. A.. 2009; The G α4 G protein subunit interacts with the MAP kinase ERK2 using a D-motif that regulates developmental morphogenesis in Dictyostelium. Dev Biol335:385–395
    [Google Scholar]
  34. Nguyen H.-N., Raisley B., Hadwiger J. A.. 2010; MAP Kinases have different functions in Dictyostelium G Protein-Mediated Signaling. Cell Signal in press [CrossRef]
    [Google Scholar]
  35. Offermanns S., Simon M. I.. 1998; Genetic analysis of mammalian G-protein signalling. Oncogene17:1375–1381
    [Google Scholar]
  36. Raman M., Chen W., Cobb M. H.. 2007; Differential regulation and properties of MAPKs. Oncogene26:3100–3112
    [Google Scholar]
  37. Remenyi A., Good M. C., Bhattacharyya R. P., Lim W. A.. 2005; The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network. Mol Cell20:951–962
    [Google Scholar]
  38. Segall J. E., Kuspa A., Shaulsky G., Ecke M., Maeda M., Gaskins C., Firtel R. A., Loomis W. F.. 1995; A MAP kinase necessary for receptor-mediated activation of adenylyl cyclase in Dictyostelium. J Cell Biol128:405–413
    [Google Scholar]
  39. Simon M. I., Strathmann M. P., Gautam N.. 1991; Diversity of G proteins in signal transduction. Science252:802–808
    [Google Scholar]
  40. Sobko A., Ma H., Firtel R. A.. 2002; Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Dev Cell2:745–756
    [Google Scholar]
  41. Srinivasan J., Gundersen R. E., Hadwiger J. A.. 1999; Activated G α subunits can inhibit multiple signal transduction pathways during dictyostelium development. Dev Biol215:443–452
    [Google Scholar]
  42. Watts D. J., Ashworth J. M.. 1970; Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J119:171–174
    [Google Scholar]
  43. Wilkie T. M., Gilbert D. J., Olsen A. S., Chen X. N., Amatruda T. T., Korenberg J. R., Trask B. J., de Jong P., Reed R. R.. other authors 1992; Evolution of the mammalian G protein alpha subunit multigene family. Nat Genet1:85–91
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036541-0
Loading
/content/journal/micro/10.1099/mic.0.036541-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error