LAP, an alcohol acetaldehyde dehydrogenase enzyme in , promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species Free

Abstract

adhesion protein (LAP), an alcohol acetaldehyde dehydrogenase (), interacts with host-cell receptor Hsp60 to promote bacterial adhesion during the intestinal phase of infection. The LAP homologue is present in pathogens (, ) and non-pathogens (, , ); however, its role in non-pathogens is unknown. Sequence analysis revealed 98 % amino acid similarity in LAP from all species. The N-terminus contains acetaldehyde dehydrogenase (ALDH) and the C-terminus an alcohol dehydrogenase (ADH). Recombinant LAP from , , and exhibited ALDH and ADH activities, and displayed strong binding affinity ( 2–31 nM) towards Hsp60. Flow cytometry, ELISA and immunoelectron microscopy revealed more surface-associated LAP in pathogens than non-pathogens. Pathogens exhibited significantly higher adhesion (<0.05) to Caco-2 cells than non-pathogens; however, pretreatment of bacteria with Hsp60 caused 47–92 % reduction in adhesion only in pathogens. These data suggest that biochemical properties of LAP from pathogenic are similar to those of the protein from non-pathogens in many respects, such as substrate specificity, immunogenicity, and binding affinity to Hsp60. However, protein fractionation analysis of extracts from pathogenic and non-pathogenic species revealed that LAP was greatly reduced in intracellular and cell-surface protein fractions, and undetectable in the extracellular milieu of non-pathogens even though the transcript levels were similar for both. Furthermore, a LAP preparation from restored adhesion in a mutant (KB208) of but not in , indicating possible lack of surface reassociation of LAP molecules in this bacterium. Taken together, these data suggest that LAP expression level, cell-surface localization, secretion and reassociation are responsible for LAP-mediated pathogenicity and possibly evolved to adapt to a parasitic life cycle in the host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036509-0
2010-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2782.html?itemId=/content/journal/micro/10.1099/mic.0.036509-0&mimeType=html&fmt=ahah

References

  1. Autret N., Raynaud C., Dubail I., Berche P., Charbit A. 2003; Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun 71:4463–4471
    [Google Scholar]
  2. Bakardjiev A. I., Theriot J. A., Portnoy D. A. 2006; Listeria monocytogenes traffics from maternal organs to the placenta and back. PLoS Pathog 2:e66
    [Google Scholar]
  3. Bennett M. R., Pang W. L., Ostroff N. A., Baumgartner B. L., Nayak S., Tsimring L. S., Hasty J. 2008; Metabolic gene regulation in a dynamically changing environment. Nature 454:1119–1122
    [Google Scholar]
  4. Bergmann S., Rohde M., Chhatwal G. S., Hammerschmidt S. 2001; α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287
    [Google Scholar]
  5. Bhunia A. K., Johnson M. G. 1992; Monoclonal antibody specific for Listeria monocytogenes associated with a 66-kilodalton cell surface antigen. Appl Environ Microbiol 58:1924–1929
    [Google Scholar]
  6. Bhunia A. K., Ball P. H., Fuad A. T., Kurz B. W., Emerson J. W., Johnson M. G. 1991; Development and characterization of a monoclonal antibody specific for Listeria monocytogenes and Listeria innocua. Infect Immun 59:3176–3184
    [Google Scholar]
  7. Bierne H., Cossart P. 2007; Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 71:377–397
    [Google Scholar]
  8. Blandino A., Caro I., Cantero D. 1997; Comparative study of alcohol dehydrogenase activity in flor yeast extracts. Biotechnol Lett 19:651–654
    [Google Scholar]
  9. Braun L., Dramsi S., Dehoux P., Bierne H., Lindahl G., Cossart P. 1997; InIB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 25:285–294
    [Google Scholar]
  10. Bubert A., Kuhn M., Goebel W., Kohler S. 1992; Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol 174:8166–8171
    [Google Scholar]
  11. Bubert A., Hein I., Rauch M., Lehner A., Yoon B., Goebel W., Wagner M. 1999; Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. Appl Environ Microbiol 65:4688–4692
    [Google Scholar]
  12. Bueno V. F., Banerjee P., Banada P. P., de Mesquita A. J., Lemes-Marques E. G., Bhunia A. K. 2010; Characterization of Listeria monocytogenes isolates of food and human origins from Brazil using molecular typing procedures and in vitro cell culture assays. Int J Environ Health Res 20:43–59
    [Google Scholar]
  13. Burkholder K. M., Kim K.-P., Mishra K. K., Medina S., Hahm B.-K., Kim H., Bhunia A. K. 2009; Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes Infect 11:859–867
    [Google Scholar]
  14. Chhatwal G. S. 2002; Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol 10:205–208
    [Google Scholar]
  15. Drevets D. A., Bronze M. S. 2008; Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Med Microbiol 53:151–165
    [Google Scholar]
  16. Espinosa A., Yan L., Zhang Z., Foster L., Clark D., Li E., Stanley S. L. Jr 2001; The bifunctional Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) protein is necessary for amebic growth and survival and requires an intact C-terminal domain for both alcohol dehydrogenase and acetaldehyde dehydrogenase activity. J Biol Chem 276:20136–20143
    [Google Scholar]
  17. Freitag N. E., Port G. C., Miner M. D. 2009; Listeria monocytogenes from saprophyte to intracellular pathogen. Nat Rev Microbiol 7:623–628
    [Google Scholar]
  18. Fujimoto S., Ike Y. 2001; pAM401-based shuttle vectors that enable overexpression of promoterless genes and one-step purification of tag fusion proteins directly from Enterococcus faecalis. Appl Environ Microbiol 67:1262–1267
    [Google Scholar]
  19. Gahan C. G., Hill C. 2005; Gastrointestinal phase of Listeria monocytogenes infection. J Appl Microbiol 98:1345–1353
    [Google Scholar]
  20. Gaillard J. L., Berche P., Frehel C., Gouin E., Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141
    [Google Scholar]
  21. Gil-Navarro I., Gil M. L., Casanova M., O'Connor J. E., Martinez J. P., Gozalbo D. 1997; The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 179:4992–4999
    [Google Scholar]
  22. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P. other authors 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  23. Gupta S., Mat-Jan F., Latifi M., Clark D. P. 2000; Acetaldehyde dehydrogenase activity of the AdhE protein of Escherichia coli is inhibited by intermediates in ubiquinone synthesis. FEMS Microbiol Lett 182:51–55
    [Google Scholar]
  24. Hamon M., Bierne H., Cossart P. 2006; Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434
    [Google Scholar]
  25. Henderson B., Allan E., Coates A. R. 2006; Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 74:3693–3706
    [Google Scholar]
  26. Holmes A. R., McNab R., Millsap K. W., Rohde M., Hammerschmidt S., Mawdsley J. L., Jenkinson H. F. 2001; The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 41:1395–1408
    [Google Scholar]
  27. Jacob F., Monod J. 1961; Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356
    [Google Scholar]
  28. Jaradat Z. W., Wampler J. W., Bhunia A. W. 2003; A Listeria adhesion protein-deficient Listeria monocytogenes strain shows reduced adhesion primarily to intestinal cell lines. Med Microbiol Immunol 192:85–91
    [Google Scholar]
  29. Jelski W., Chrostek L., Szmitkowski M., Markiewicz W. 2006; The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in breast cancer. Clin Exp Med 6:89–93
    [Google Scholar]
  30. Johansson J., Mandin P., Renzoni A., Chiaruttini C., Springer M., Cossart P. 2002; An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–561
    [Google Scholar]
  31. Jonquieres R., Bierne H., Fiedler F., Gounon P., Cossart P. 1999; Interaction between the protein InIB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 34:902–914
    [Google Scholar]
  32. Kim K.-P. 2004 Genetic identification and characterization of Listeria adhesion protein, an alcohol acetaldehyde dehydrogenase homologue in Listeria monocytogenes PhD thesis Department of Food Science, Purdue University;
  33. Kim K. P., Jagadeesan B., Burkholder K. M., Jaradat Z. W., Wampler J. L., Lathrop A. A., Morgan M. T., Bhunia A. K. 2006; Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256:324–332
    [Google Scholar]
  34. Kinhikar A. G., Vargas D., Li H., Mahaffey S. B., Hinds L., Belisle J. T., Laal S. 2006; Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 60:999–1013
    [Google Scholar]
  35. Koo O. K., Jeong D. W., Lee J. M., Kim M. J., Lee J. H., Chang H. C., Kim J. H., Lee H. J. 2005; Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene ( adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol Lett 27:505–510
    [Google Scholar]
  36. Koo O. K., Liu Y., Shuaib S., Bhattacharya S., Ladisch M. R., Bashir R., Bhunia A. K. 2009; Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem 81:3094–3101
    [Google Scholar]
  37. Lathrop A. A., Jaradat Z. W., Haley T., Bhunia A. K. 2003; Characterization and application of a Listeria monocytogenes reactive monoclonal antibody C11E9 in a resonant mirror biosensor. J Immunol Methods 281:119–128
    [Google Scholar]
  38. Lecuit M., Nelson D. M., Smith S. D., Khun H., Huerre M., Vacher-Lavenu M. C., Gordon J. I., Cossart P. 2004; Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci U S A 101:6152–6157
    [Google Scholar]
  39. Lenz L. L., Portnoy D. A. 2002; Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol Microbiol 45:1043–1056
    [Google Scholar]
  40. Lenz L. L., Mohammadi S., Geissler A., Portnoy D. A. 2003; SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 100:12432–12437
    [Google Scholar]
  41. Machata S., Hain T., Rohde M., Chakraborty T. 2005; Simultaneous deficiency of both MurA and p60 proteins generates a rough phenotype in Listeria monocytogenes. J Bacteriol 187:8385–8394
    [Google Scholar]
  42. Membrillo-Hernandez J., Echave P., Cabiscol E., Tamarit J., Ros J., Lin E. C. 2000; Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. J Biol Chem 275:33869–33875
    [Google Scholar]
  43. Nelson K. E., Fouts D. E., Mongodin E. F., Ravel J., DeBoy R. T., Kolonay J. F., Rasko D. A., Angiuoli S. V., Gill S. R. other authors 2004; Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386–2395
    [Google Scholar]
  44. Pancholi V., Chhatwal G. S. 2003; Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:391–401
    [Google Scholar]
  45. Pandiripally V. K., Westbrook D. G., Sunki G. R., Bhunia A. K. 1999; Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J Med Microbiol 48:117–124
    [Google Scholar]
  46. Pazos M. J., Alfonso A., Vieytes M. R., Yasumoto T., Vieites J. M., Botana L. M. 2004; Resonant mirror biosensor detection method based on yessotoxin-phosphodiesterase interactions. Anal Biochem 335:112–118
    [Google Scholar]
  47. Pelech S. 2004; Tracking cell signaling protein expression and phosphorylation by innovative proteomic solutions. Curr Pharm Biotechnol 5:69–77
    [Google Scholar]
  48. Pentecost M., Otto G., Theriot J. A., Amieva M. R. 2006; Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion. PLoS Pathog 2:e3
    [Google Scholar]
  49. Pilgrim S., Kolb-Maurer A., Gentschev I., Goebel W., Kuhn M. 2003; Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun 71:3473–3484
    [Google Scholar]
  50. Sabet C., Toledo-Arana A., Personnic N., Lecuit M., Dubrac S., Poupel O., Gouin E., Nahori M. A., Cossart P., Bierne H. 2008; The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun 76:1368–1378
    [Google Scholar]
  51. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  52. Schaumburg J., Diekmann O., Hagendorff P., Bergmann S., Rohde M., Hammerschmidt S., Jansch L., Wehland J., Karst U. 2004; The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006
    [Google Scholar]
  53. Schubert W. D., Urbanke C., Ziehm T., Beier V., Machner M. P., Domann E., Wehland J., Chakraborty T., Heinz D. W. 2002; Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111:825–836
    [Google Scholar]
  54. Scott J. R., Barnett T. C. 2006; Surface proteins of gram-positive bacteria and how they get there. Annu Rev Microbiol 60:397–423
    [Google Scholar]
  55. Seifert K. N., McArthur W. P., Bleiweis A. S., Brady L. J. 2003; Characterization of group B streptococcal glyceraldehyde-3-phosphate dehydrogenase: surface localization, enzymatic activity, and protein-protein interactions. Can J Microbiol 49:350–356
    [Google Scholar]
  56. Torian B. E., Reed S. L., Flores B. M., Creely C. M., Coward J. E., Vial K., Stamm W. E. 1990; The 96-kilodalton antigen as an integral membrane protein in pathogenic Entamoeba histolytica: potential differences in pathogenic and nonpathogenic isolates. Infect Immun 58:753–760
    [Google Scholar]
  57. Vazquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Dominguez-Bernal G., Goebel W., Gonzalez-Zorn B., Wehland J., Kreft J. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640
    [Google Scholar]
  58. Wampler J. L., Kim K. P., Jaradat Z., Bhunia A. K. 2004; Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 72:931–936
    [Google Scholar]
  59. Waseem A., Yaqoob M., Nabi A. 2006; Flow-injection determination of thyroxine using immobilized enzyme with tris (2,2′-bipyridyl)ruthenium(III) chemiluminescence detection. Anal Sci 22:1095–1098
    [Google Scholar]
  60. Yang W., Li E., Kairong T., Stanley S. L. Jr 1994; Entamoeba histolytica has an alcohol dehydrogenase homologous to the multifunctional adhE gene product of Escherichia coli. Mol Biochem Parasitol 64:253–260
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036509-0
Loading
/content/journal/micro/10.1099/mic.0.036509-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed