Characterization of the gene and its role in virulence Free

Abstract

The ORF designated HI1275 in the Rd KW20 genomic sequence encodes a putative -adenosyl methyltransferase with significant similarity to tellurite-resistance determinants () in other species. While the . can complement an mutation, thus restoring tellurite resistance, its role in is unknown. In a previous study defining the iron and haem modulon of , we showed that transcription of this gene in Rd KW20 increases during growth in iron- and haem-restricted media. Since iron and haem uptake genes, and other known virulence factors, constitute the majority of the iron- and haem-regulated gene set, we postulated that may play a role in nutrient acquisition and/or the virulence of . A mutant was constructed in the type b strain 10810 and was evaluated for growth defects in various supplemented media, as well as for its ability to cause infection in rat models of infection. Deletion of leads to an increase in sensitivity both to tellurite and to the oxidizing agents cumene hydroperoxide, tert-butyl hydroperoxide and hydrogen peroxide. The mutant additionally showed a significantly reduced ability to utilize free haem as well as several haem-containing moieties including haem–human serum albumin, haemoglobin and haemoglobin–haptoglobin. Examination of the regulation kinetics indicated that transcription of was independent of both tellurite exposure and oxidative stress. Paired comparisons of the mutant and the wild-type strain 10810 showed that is required for wild-type levels of infection in rat models of invasive disease. To our knowledge this is the first report of a role for in virulence in any bacterial species. These data demonstrate that plays a role in both resistance to oxidative damage and haem uptake/utilization, protects from tellurite exposure, and is important for virulence of this organism in an animal model of invasive disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036400-0
2010-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1188.html?itemId=/content/journal/micro/10.1099/mic.0.036400-0&mimeType=html&fmt=ahah

References

  1. Alexander H. E., Leidy G. 1951; Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells. J Exp Med 93:345–359
    [Google Scholar]
  2. Amoozegar M. A., Ashengroph M., Malekzadeh F., Reza R. M., Naddaf S., Kabiri M. 2008; Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6. Microbiol Res 163:456–465
    [Google Scholar]
  3. Barenkamp S. J. 1992; Outer membrane proteins and lipopolysaccharides of nontypeable Haemophilus influenzae. J Infect Dis 165:S181–S184
    [Google Scholar]
  4. Borsetti F., Tremaroli V., Michelacci F., Borghese R., Winterstein C., Daldal F., Zannoni D. 2005; Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156:807–813
    [Google Scholar]
  5. Bradley D. E. 1985; Detection of tellurite-resistance determinants in IncP plasmids. J Gen Microbiol 131:3135–3137
    [Google Scholar]
  6. Calderon I. L., Arenas F. A., Perez J. M., Fuentes D. E., Araya M. A., Saavedra C. P., Tantalean J. C., Pichuantes S. E., Youderian P. A., Vasquez C. C. 2006; Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 1:e70
    [Google Scholar]
  7. Calderon I. L., Elias A. O., Fuentes E. L., Pradenas G. A., Castro M. E., Arenas F. A., Perez J. M., Vasquez C. C. 2009; Tellurite-mediated disabling of [4Fe–4S] clusters of Escherichia coli dehydratases. Microbiology 155:1840–1846
    [Google Scholar]
  8. Chasteen T. G., Bentley R. 2003; Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–25
    [Google Scholar]
  9. Chasteen T. G., Fuentes D. E., Tantalean J. C., Vasquez C. C. 2009; Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 33:820–832
    [Google Scholar]
  10. Deslandes V., Nash J. H., Harel J., Coulton J. W., Jacques M. 2007; Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions. BMC Genomics 8:72
    [Google Scholar]
  11. Dyllick-Brenzinger M., Liu M., Winstone T. L., Taylor D. E., Turner R. J. 2000; The role of cysteine residues in tellurite resistance mediated by the TehAB determinant. Biochem Biophys Res Commun 277:394–400
    [Google Scholar]
  12. Evans N. M., Smith D. D., Wicken A. J. 1974; Haemin and nicotinamide adenine dinucleotide requirements of Haemophilus influenzae and Haemophilus parainfluenzae. J Med Microbiol 7:359–365
    [Google Scholar]
  13. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J., Dougherty B. A. other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  14. Harrison A., Ray W. C., Baker B. D., Armbruster D. W., Bakaletz L. O., Munson R. S. Jr 2007; The OxyR regulon in nontypeable Haemophilus influenzae. J Bacteriol 189:1004–1012
    [Google Scholar]
  15. Liu M., Taylor D. E. 1999; Characterization of gram-positve tellurite resistance encoded by the Streptococcus pneumoniae tehB gene. FEMS Microbiol Lett 174:385–392
    [Google Scholar]
  16. Liu M., Turner R. J., Winstone T. L., Saetre A., Dyllick-Brenzinger M., Jickling G., Tari L. W., Weiner J. H., Taylor D. E. 2000; Escherichia coli TehB requires S-adenosylmethionine as a cofactor to mediate tellurite resistance. J Bacteriol 182:6509–6513
    [Google Scholar]
  17. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408
    [Google Scholar]
  18. Morton D. J., Williams P. 1989; Utilization of transferrin-bound iron by Haemophilus species of human and porcine origins. FEMS Microbiol Lett 53:123–127
    [Google Scholar]
  19. Morton D. J., Williams P. 1990; Siderophore-independent acquisition of transferrin-bound iron by Haemophilus influenzae type b. J Gen Microbiol 136:927–933
    [Google Scholar]
  20. Morton D. J., Whitby P. W., Jin H., Ren Z., Stull T. L. 1999; Effect of multiple mutations in the hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA, HgpB, and HgpC of Haemophilus influenzae type b. Infect Immun 67:2729–2739
    [Google Scholar]
  21. Morton D. J., Bakaletz L. O., Jurcisek J. A., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2004a; Reduced severity of middle ear infection caused by nontypeable Haemophilus influenzae lacking the hemoglobin/hemoglobin-haptoglobin binding proteins (Hgp) in a chinchilla model of otitis media. Microb Pathog 36:25–33
    [Google Scholar]
  22. Morton D. J., Smith A., Ren Z., Madore L. L., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2004b; Identification of a haem-utilization protein (Hup) in Haemophilus influenzae. Microbiology 150:3923–3933
    [Google Scholar]
  23. Morton D. J., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2006a; Differential utilization by Haemophilus influenzae of hemoglobin complexed to the three human haptoglobin phenotypes. FEMS Immunol Med Microbiol 46:426–432
    [Google Scholar]
  24. Morton D. J., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2006b; Utilization of myoglobin as a heme source by Haemophilus influenzae requires binding of myoglobin to haptoglobin. FEMS Microbiol Lett 258:235–240
    [Google Scholar]
  25. Morton D. J., Seale T. W., Madore L. L., VanWagoner T. M., Whitby P. W., Stull T. L. 2007a; The haem-haemopexin utilization gene cluster ( hxuCBA) as a virulence factor of Haemophilus influenzae. Microbiology 153:215–224
    [Google Scholar]
  26. Morton D. J., Smith A., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2007b; Lipoprotein e (P4) of Haemophilus influenzae: role in heme utilization and pathogenesis. Microbes Infect 9:932–939
    [Google Scholar]
  27. Morton D. J., VanWagoner T. M., Seale T. W., Whitby P. W., Stull T. L. 2008; Catalase as a source of both X- and V-factor for Haemophilus influenzae. FEMS Microbiol Lett 279:157–161
    [Google Scholar]
  28. Morton D. J., Seale T. W., Bakaletz L. O., Jurcisek J. A., Smith A., VanWagoner T. M., Whitby P. W., Stull T. L. 2009; The heme-binding protein (HbpA) of Haemophilus influenzae as a virulence determinant. Int J Med Microbiol 299:479–488
    [Google Scholar]
  29. Murphy T. F. 2003; Respiratory infections caused by non-typeable Haemophilus influenzae. Curr Opin Infect Dis 16:129–134
    [Google Scholar]
  30. Nizet V., Colina K. F., Almquist J. R., Rubens C. E., Smith A. L. 1996; A virulent nonencapsulated Haemophilus influenzae. J Infect Dis 173:180–186
    [Google Scholar]
  31. Olczak A. A., Olson J. W., Maier R. J. 2002; Oxidative-stress resistance mutants of Helicobacter pylori. J Bacteriol 184:3186–3193
    [Google Scholar]
  32. Paustian M. L., May B. J., Kapur V. 2001; Pasteurella multocida gene expression in response to iron limitation. Infect Immun 69:4109–4115
    [Google Scholar]
  33. Poje G., Redfield R. J. 2003a; General methods for culturing Haemophilus influenzae. Methods Mol Med 71:51–56
    [Google Scholar]
  34. Poje G., Redfield R. J. 2003b; Transformation of Haemophilus influenzae. Methods Mol Med 71:57–70
    [Google Scholar]
  35. Saeed-Kothe A., Yang W., Mills S. D. 2004; Use of the riboflavin synthase gene ( ribC) as a model for development of an essential gene disruption and complementation system for Haemophilus influenzae. Appl Environ Microbiol 70:4136–4143
    [Google Scholar]
  36. Seale T. W., Morton D. J., Whitby P. W., Wolf R., Kosanke S. D., VanWagoner T. M., Stull T. L. 2006; Complex role of hemoglobin and hemoglobin-haptoglobin binding proteins in Haemophilus influenzae virulence in the infant rat model of invasive infection. Infect Immun 74:6213–6225
    [Google Scholar]
  37. Smith A. L., Smith D. H., Averill D. R., Marino J., Moxon E. R. 1973; Production of Haemophilus influenzae b meningitis in infant rats by intraperitoneal inoculation. Infect Immun 8:278–290
    [Google Scholar]
  38. St Geme J. W. 2000; The pathogenesis of nontypable Haemophilus influenzae otitis media. Vaccine 19:S41–S50
    [Google Scholar]
  39. Stull T. L. 1987; Protein sources of heme for Haemophilus influenzae. Infect Immun 55:148–153
    [Google Scholar]
  40. Summers A. O., Jacoby G. A. 1977; Plasmid-determined resistance to tellurium compounds. J Bacteriol 129:276–281
    [Google Scholar]
  41. Suzuki K., Bakaletz L. O. 1994; Synergistic effect of adenovirus type 1 and nontypeable Haemophilus influenzae in a chinchilla model of experimental otitis media. Infect Immun 62:1710–1718
    [Google Scholar]
  42. Tantalean J. C., Araya M. A., Saavedra C. P., Fuentes D. E., Perez J. M., Calderon I. L., Youderian P., Vasquez C. C. 2003; The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. J Bacteriol 185:5831–5837
    [Google Scholar]
  43. Taylor D. E. 1999; Bacterial tellurite resistance. Trends Microbiol 7:111–115
    [Google Scholar]
  44. Taylor D. E., Hou Y., Turner R. J., Weiner J. H. 1994; Location of a potassium tellurite resistance operon ( tehA tehB) within the terminus of Escherichia coli K-12. J Bacteriol 176:2740–2742
    [Google Scholar]
  45. Turk D. C. 1984; The pathogenicity of Haemophilus influenzae. J Med Microbiol 18:1–16
    [Google Scholar]
  46. Turner R. J., Taylor D. E., Weiner J. H. 1997; Expression of Escherichia coli TehA gives resistance to antiseptics and disinfectants similar to that conferred by multidrug resistance efflux pumps. Antimicrob Agents Chemother 41:440–444
    [Google Scholar]
  47. VanWagoner T. M., Whitby P. W., Morton D. J., Seale T. W., Stull T. L. 2004; Characterization of three new competence-regulated operons in Haemophilus influenzae. J Bacteriol 186:6409–6421
    [Google Scholar]
  48. Walter E. G., Taylor D. E. 1989; Comparison of tellurite resistance determinants from the IncPa plasmid RP4Ter and the IncHII plasmid pHH1508a. J Bacteriol 171:2160–2165
    [Google Scholar]
  49. Wang G., Hong Y., Olczak A. A., Maier S. E., Maier R. J. 2006; Dual roles of Helicobacter pylori NapA in inducing and combating oxidative stress. Infect Immun 74:6839–6846
    [Google Scholar]
  50. Whitby P. W., VanWagoner T. M., Seale T. W., Morton D. J., Stull T. L. 2006a; Transcriptional profile of Haemophilus influenzae: effects of iron and heme. J Bacteriol 188:5640–5645
    [Google Scholar]
  51. Whitby P. W., VanWagoner T. M., Springer J. M., Morton D. J., Seale T. W., Stull T. L. 2006b; Burkholderia cenocepacia utilizes ferritin as an iron source. J Med Microbiol 55:661–668
    [Google Scholar]
  52. Whitby P. W., Seale T. W., VanWagoner T. M., Morton D. J., Stull T. L. 2009; The iron/heme regulated genes of Haemophilus influenzae: comparative transcriptional profiling as a tool to define the species core modulon. BMC Genomics 10:6
    [Google Scholar]
  53. Zannoni D., Borsetti F., Harrison J. J., Turner R. J. 2008; The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol 53:1–72
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036400-0
Loading
/content/journal/micro/10.1099/mic.0.036400-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed