1887

Abstract

The fermentative metabolism of -glucuronic acid (glucuronate) in was investigated with emphasis on the dissimilation of pyruvate via pyruvate formate-lyase (PFL) and pyruvate dehydrogenase (PDH). and metabolic flux analysis (MFA) revealed that PFL and PDH share the dissimilation of pyruvate in wild-type MG1655. Surprisingly, it was found that PDH supports fermentative growth on glucuronate in the absence of PFL. The PDH-deficient strain (Pdh−) exhibited a slower transition into the exponential phase and a decrease in specific rates of growth and glucuronate utilization. Moreover, a significant redistribution of metabolic fluxes was found in PDH- and PFL-deficient strains. Since no role had been proposed for PDH in the fermentative metabolism of , the metabolic differences between MG1655 and Pdh− were further investigated. An increase in the oxidative pentose phosphate pathway (ox-PPP) flux was observed in response to PDH deficiency. A comparison of the ox-PPP and PDH pathways led to the hypothesis that the role of PDH is the supply of reducing equivalents. The finding that a PDH deficiency lowers the NADH : NAD ratio supported the proposed role of PDH. Moreover, the NADH : NAD ratio in a strain deficient in both PDH and the ox-PPP (Pdh−Zwf−) was even lower than that observed for Pdh−. Strain Pdh−Zwf− also exhibited a slower transition into the exponential phase and a lower growth rate than Pdh−. Finally, a transhydrogenase-deficient strain grew more slowly than wild-type but did not show the slower transition into the exponential phase characteristic of Pdh− mutants. It is proposed that PDH fulfils two metabolic functions. First, by creating the appropriate internal redox state (i.e. appropriate NADH : NAD ratio), PDH ensures the functioning of the glucuronate utilization pathway. Secondly, the NADH generated by PDH can be converted to NADPH by the action of transhydrogenases, thus serving as biosynthetic reducing power in the synthesis of building blocks and macromolecules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036251-0
2010-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1860.html?itemId=/content/journal/micro/10.1099/mic.0.036251-0&mimeType=html&fmt=ahah

References

  1. Atsumi S., Liao J. C. 2008; Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419
    [Google Scholar]
  2. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 22:006–0008
    [Google Scholar]
  3. Canonaco F., Hess T. A., Heri S., Wang T., Szyperski T., Sauer U. 2001; Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247–252
    [Google Scholar]
  4. Danson M. J., Hooper E. A., Perham R. N. 1978; Intramolecular coupling of active sites in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Biochem J 175:193–198
    [Google Scholar]
  5. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  6. de Graef M. R., Alexeeva S., Snoep J. L., Teixeira de Mattos M. J. 1999; The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357
    [Google Scholar]
  7. Dharmadi Y., Gonzalez R. 2005; A better global resolution function and a novel iterative stochastic search method for optimization of high-performance liquid chromatographic separation. J Chromatogr A 1070:89–101
    [Google Scholar]
  8. Dharmadi Y., Murarka A., Gonzalez R. 2006; Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829
    [Google Scholar]
  9. Downs D. M. 2006; Understanding microbial metabolism. Annu Rev Microbiol 60:533–559
    [Google Scholar]
  10. Edwards J. S., Palsson B. O. 2000; The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533
    [Google Scholar]
  11. Finegold S. M., Sutter V. L., Mathisen G. E. 1983; Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease pp 3–31 Edited by Hentges D. J. New York: Academic Press;
    [Google Scholar]
  12. Fuhrer T., Sauer U. 2009; Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 191:2112–2121
    [Google Scholar]
  13. Gonzalez R., Andrews B. A., Molitor J., Asenjo J. A. 2003; Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Biotechnol Bioeng 82:152–169
    [Google Scholar]
  14. Guest J. R. 1979; Anaerobic growth of Escherichia coli K-12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoracetate resistant mutants. J Gen Microbiol 115:259–271
    [Google Scholar]
  15. Guest J. R., Angier S. J., Russell G. C. 1989; Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli. Ann N Y Acad Sci 573:76–99
    [Google Scholar]
  16. Gupta S., Clark D. P. 1989; Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation. J Bacteriol 171:3650–3655
    [Google Scholar]
  17. Hasona A., Kim Y., Healy F. G., Ingram L. O., Shanmugam K. T. 2004; Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186:7593–7600
    [Google Scholar]
  18. Kaiser M., Sawers G. 1994; Pyruvate formate-lyase is not essential for nitrate respiration by Escherichia coli. FEMS Microbiol Lett 117:163–168
    [Google Scholar]
  19. Kang Y. S., Durfee T., Glasner J. D., Qiu Y., Frisch D., Winterberg K. M., Blattner F. R. 2004; Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930
    [Google Scholar]
  20. Keseler I. M., Collado-Vides J., Gama-Castro S., Ingraham J., Paley S., Paulsen I. T., Peralta-Gil M., Karp P. D. 2005; EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337
    [Google Scholar]
  21. Lawford H. G., Rousseau J. D. 1997; Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of Escherichia coli B. Appl Biochem Biotechnol 63:65221–241
    [Google Scholar]
  22. Lee D. Y., Yun H., Park S., Lee S. Y. 2003; MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19:2144–2146
    [Google Scholar]
  23. Levanon S. S., San K. Y., Bennett G. N. 2005; Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng 89:556–564
    [Google Scholar]
  24. Mandrand-Berthelot M. A., Lagarde A. E. 1977; Hit-and-run mechanism for d-glucuronate reduction catalyzed by d-mannonate – NAD oxidoreductase of Escherichia coli. Biochim Biophys Acta 483:6–23
    [Google Scholar]
  25. Mandrand-Berthelot M. A., Condemine G., Hugouvieux-Cotte-Pattat N. 2004; Catabolism of hexuronides, hexuronates, aldonates, and aldarates. In EcoSal—Escherichia coli and Salmonella: Cellular And Molecular Biology Edited by Curtis R. III Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Mat-Jan F., Alam K. Y., Clark D. P. 1989; Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol 171:342–348
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Murarka A., Dharmadi Y., Yazdani S. S., Gonzalez R. 2008; Fermentative utilization of glycerol in Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135
    [Google Scholar]
  29. Neidhardt F. C., Bloch P. L., Smith D. F. 1974; Culture medium for enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  30. Neidhardt F. C., Ingraham J., Schaechter M. 1990 Physiology of the Bacterial Cell Sunderland, MA: Sinauer Associates;
  31. Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. 1996 Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. Washington, DC: American Society for Microbiology;
  32. Nielsen J. 2003; It is all about metabolic fluxes. J Bacteriol 185:7031–7035
    [Google Scholar]
  33. Nielsen J., Villadsen J., Liden G. 2003; Biochemical reactions – a first look. In Bioreaction Engineering Principles pp 60–73 Edited by Nielsen J., Villadsen J., Lidén G. New York: Springer;
    [Google Scholar]
  34. Osman Y. A., Conway T., Bonetti S. J., Ingram L. O. 1987; Glycolytic flux in Zymomonas mobilis: enzyme and metabolite levels during batch fermentation. J Bacteriol 169:3726–3736
    [Google Scholar]
  35. Peekhaus N., Conway T. 1998; What's for dinner?: Entner–Doudoroff metabolism in Escherichia coli. J Bacteriol 180:3495–3502
    [Google Scholar]
  36. Pramanik J., Keasling J. D. 1997; A stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56:398–421
    [Google Scholar]
  37. Romeo T., Snoep J. L. 2005; Glycolysis and flux control. In EcoSal—Escherichia coli and Salmonella: Cellular and Molecular Biology Edited by Curtis R. III Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Sauer U., Canonaco F., Heri S., Perrenoud A., Fischer E. 2004; The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619
    [Google Scholar]
  40. Sawers R. G., Clark D. P. 2004; Fermentative pyruvate and acetyl-coenzyme A metabolism. In EcoSal—Escherichia coli and Salmonella: Cellular and Molecular Biology Edited by Curtis R. III Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Smith M. W., Neidhardt F. C. 1983; 2-Oxoacid dehydrogenase complexes of Escherichia coli: cellular amounts and patterns of synthesis. J Bacteriol 156:81–88
    [Google Scholar]
  42. Snoep J. L., Teixeira de Mattos M. J., Postma P. W., Neijssel O. M. 1990; Involvement of pyruvate dehydrogenase in product formation in pyruvate-limited anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. Arch Microbiol 154:50–55
    [Google Scholar]
  43. Snoep J. L., de Graef M. R., Westphal A. H., de Kok A., Teixeira de Mattos M. J., Neijssel O. M. 1993; Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo. FEMS Microbiol Lett 114:279–283
    [Google Scholar]
  44. Stephanopoulos G., Aristidou A. A., Nielsen J. 1998 Metabolic Engineering: Principles and Methodology San Diego, CA: Academic Press;
  45. Stocchi V., Cucchiarini L., Magnani M., Chiarantini L., Palma P., Crescentini G. 1985; Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124
    [Google Scholar]
  46. Stryer L. 1995 Biochemistry New York: Freeman;
  47. Tao H., Gonzalez R., Martinez A., Rodriguez M., Ingram L. O., Preston J. F., Shanmugam K. T. 2001; Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol 183:2979–2988
    [Google Scholar]
  48. Varenne S., Casse F., Chippaux M., Pascal M. C. 1975; A mutant of Escherichia coli deficient in pyruvate formate lyase. Mol Gen Genet 141:181–184
    [Google Scholar]
  49. Yazdani S. S., Gonzalez R. 2008; Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036251-0
Loading
/content/journal/micro/10.1099/mic.0.036251-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error