Biodegradation of the xenobiotic organic disulphide 4,4′-dithiodibutyric acid by strain MI2 and comparison with the microbial utilization of 3,3′-dithiodipropionic acid and 3,3′-thiodipropionic acid Free

Abstract

Application of the non-toxic 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) as precursors for the microbial production of polythioesters (PTEs), a class of biologically persistent biopolymers containing sulphur in the backbone, was successfully established previously. However, synthesis of PTEs containing 4-mercaptobutyrate (4MB) as building blocks could not be achieved. The very harmful 4MB is not used as a PTE precursor or as the carbon source for growth by any known strain. As a promising alternative, the harmless oxidized disulfide of two molecules of 4MB, 4,4′-dithiodibutyric acid (DTDB), was employed for enrichments of bacterial strains capable of biodegradation. Investigation of novel precursor substrates for PTEs and comparison of respective strains growing on TDP, DTDP and DTDB as sole carbon source was accomplished. A broad variety of bacteria capable of using one of these organic sulphur compounds were isolated and compared. TDP and DTDP were degraded by several strains belonging to different genera, whereas all DTDB-utilizing strains were affiliated to the species . Transposon mutagenesis of strain MI2 and screening of 7500 resulting mutants yielded three mutants exhibiting impaired growth on DTDB. Physiological studies revealed production of volatile hydrogen sulphide and accumulation of significant amounts of 4MB, 4-oxo-4-sulphanylbutanoic acid and succinic acid in the culture supernatants. Based on this knowledge, a putative pathway for degradation of DTDB was proposed: DTDB could be cleaved into two molecules of 4MB, followed by an oxidation yielding 4-oxo-4-sulphanylbutanoic acid. A putative desulphydrase probably catalyses the abstraction of sulphur, thereby generating succinic acid and hydrogen sulphide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036178-0
2010-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1221.html?itemId=/content/journal/micro/10.1099/mic.0.036178-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Appel R. B., Tomlinson I. A., Hill I. 1995; New reagents for the reductive quenching of ozonolysis reactions. Synth Commun 25:3589–3595
    [Google Scholar]
  3. Bell K. S., Philp J. C., Aw D. W. J., Christofi N. 1998; The genus Rhodococcus. J Appl Microbiol 85:195–210
    [Google Scholar]
  4. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  5. Brandl H., Gross A., Lenz R. W., Fuller R. C. 1988; Pseudomonas oleovorans as a source of poly( β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982
    [Google Scholar]
  6. Bruland N., Wübbeler J. H., Steinbüchel A. 2009a; 3-Mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3′-thiodipropionic acid degrading bacterium Variovorax paradoxus. J Biol Chem 284:660–672
    [Google Scholar]
  7. Bruland N., Bathe S., Willems A., Steinbüchel A. 2009b; Pseudorhodoferax soli gen. nov., sp. nov., and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae. Int J Syst Evol Microbiol 59:2702–2707
    [Google Scholar]
  8. Codognoto L., Winter E., Paschoal J. A. R., Suffredini H. B., Cabral M. F., Machado S. A. S., Rath S. 2007; Electrochemical behavior of dopamine at a 3,3′-dithiodipropionic acid self-assembled monolayers. Talanta 72:427–433
    [Google Scholar]
  9. de Carvalho C. C. C. R., da Fonseca M. M. R. 2005; The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726
    [Google Scholar]
  10. Desomer J., Dhaese P., van Montagu M. 1990; Transformation of Rhodococcus fascians by high-voltage electroporation and development of R. fascians cloning vectors. Appl Environ Microbiol 56:2818–2825
    [Google Scholar]
  11. Elbanna K., Lütke-Eversloh T., Van Trappen S., Mergaert J., Swings J., Steinbüchel A. 2003; Schlegelella thermodepolymerans gen. nov., sp. nov., a novel thermophilic bacterium that degrades poly(3-hydroxybutyrate- co-3-mercaptopropionate). Int J Syst Evol Microbiol 53:1165–1168
    [Google Scholar]
  12. Gerhardt P., Murry R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
  13. Gibello A., Vela A. I., Martin M., Barra-Caracciolo A., Grenni P., Fernández-Garayzábal J. F. 2009; Reclassification of the members of the genus Tetrathiobacter Ghosh et al. 2005 to the genus Advenella Coenye et al. 2005. Int J Syst Evol Microbiol 59:1914–1918
    [Google Scholar]
  14. Grossman M. J., Lee M. K., Prince R. C., Minak-Bernero V., George G. N., Pickering I. J. 2001; Deep desulphurization of extensively hydrodesulphurized middle distillate oil by Rhodococcus sp. strain ECRD-1. Appl Environ Microbiol 67:1949–1952
    [Google Scholar]
  15. Gupta R., Gupta N., Rathi P. 2004; Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781
    [Google Scholar]
  16. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  17. Held K. D., Biaglow J. E. 1994; Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells. Radiat Res 139:15–23
    [Google Scholar]
  18. Innis M. A., Gelfand D. H., Suinsky J. J., White T. J. 1990 PCR Protocols: a Guide to Methods and Applications San Diego, CA: Academic Press;
  19. Jakubowski H., Fersht A. R. 1981; Alternative pathways of editing noncognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res 9:3105–3117
    [Google Scholar]
  20. Jakubowski H., Goldman E. 1992; Editing of errors in selection of amino acids for protein synthesis. Microbiol Rev 56:412–429
    [Google Scholar]
  21. Jang L.-S., Keng H.-K. 2006; Development and characterization of 4,4′-dithiodibutyric acid as a monolayer for protein chips. Sens Mater 18:367–380
    [Google Scholar]
  22. Kalscheuer R., Arenskötter M., Steinbüchel A. 1999; Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids. Appl Microbiol Biotechnol 52:508–515
    [Google Scholar]
  23. Kanayama N., Kitano H. 2000; Interfacial recognition of sugars by boronic acid-carrying self-assembled monolayers. Langmuir 16:577–583
    [Google Scholar]
  24. Kim D. Y., Elbanna K., Thakor N., Lütke-Eversloh T., Steinbüchel A. 2005; Poly(3-mercaptopropionate): a non-biodegradable biopolymer?. Biomacromolecules 6:897–901
    [Google Scholar]
  25. Liu S. J., Steinbüchel A. 2000; A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acid) in Escherichia coli. Appl Environ Microbiol 66:739–743
    [Google Scholar]
  26. Lütke-Eversloh T., Steinbüchel A. 2003; Novel precursor substrates for polythioesters (PTE) and limits of PTE biosynthesis in Ralstonia eutropha. FEMS Microbiol Lett 221:191–196
    [Google Scholar]
  27. Lütke-Eversloh T., Steinbüchel A. 2004; Microbial polythioesters. Macromol Biosci 4:166–174
    [Google Scholar]
  28. Lütke-Eversloh T., Bergander K., Luftmann H., Steinbüchel A. 2001a; Identification of a new class of biopolymer: bacterial synthesis of sulfur-containing polymer with thioester linkages. Microbiology 147:11–19
    [Google Scholar]
  29. Lütke-Eversloh T., Bergander K., Luftmann H., Steinbüchel A. 2001b; Biosynthesis of poly(3-hydroxybutyrate- co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB. Biomacromolecules 2:1061–1065
    [Google Scholar]
  30. Lütke-Eversloh T., Kawada J., Marchessault R. H., Steinbüchel A. 2002a; Characterization of biological polythioesters: physical properties of novel copolymers synthesized by Ralstonia eutropha. Biomacromolecules 3:159–166
    [Google Scholar]
  31. Lütke-Eversloh T., Fischer A., Remminghorst U., Kawada J., Marchessault R. H., Bögershausen A., Kalwei M., Eckert H., Reichelt R. other authors 2002b; Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat Mater 1:236–240
    [Google Scholar]
  32. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  33. McLeod M. P., Warren R. L., Hsiao W. W., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A. L. other authors 2006; The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103:15582–15587
    [Google Scholar]
  34. Nagy I., Schoofs G., Vanderleyen J., De Mot R. 1997; Transposition of the IS 21-related element IS 1415 in Rhodococcus erythropolis. J Bacteriol 179:4635–4638
    [Google Scholar]
  35. Pedrós-Alio C., Mas J., Guerrero R. 1985; The influence of poly- β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143:178–184
    [Google Scholar]
  36. Sallam K. I., Mitani Y., Tamura T. 2006; Construction of random transposition mutagenesis system in Rhodococcus erythropolis using IS 1415. J Biotechnol 121:13–22
    [Google Scholar]
  37. Sallam K. I., Tamura N., Tamura T. 2007; A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis. Gene 386:173–182
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467
    [Google Scholar]
  40. Saxena R. S., Gupta A. 1984; Electrochemical studies on the composition, stability constants and thermodynamics of Ti (I) complexes with dithiodipropionic acid. Monatsh Chem 115:1293–1298
    [Google Scholar]
  41. Schlegel H. G., Gottschalk G., von Bartha R. 1961a; Formation and utilization of poly- β-hydroxybutyric acid by Knallgas bacteria ( Hydrogenomonas. Nature 191:463–465
    [Google Scholar]
  42. Schlegel H. G., Kaltwasser H., Gottschalk G. 1961b; Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222 in German
    [Google Scholar]
  43. Scott G. 1968; Mechanisms of antioxidant action: esters of thiodipropionic acid. Chem Commun 24:1572–1574
    [Google Scholar]
  44. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology (N Y ) 1:784–791
    [Google Scholar]
  45. Steinbüchel A. 2001; Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24
    [Google Scholar]
  46. Thakor N., Lütke-Eversloh T., Steinbüchel A. 2005; Application of the BPEC pathway for large-scale biotechnological production of poly(3-mercaptopropionate) by recombinant Escherichia coli, including a novel in situ isolation method. Appl Environ Microbiol 71:835–841
    [Google Scholar]
  47. Timm A., Byrom D., Steinbüchel A. 1990; Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. Appl Microbiol Biotechnol 33:296–301
    [Google Scholar]
  48. Toups M., Wübbeler J. H., Steinbüchel A. 2009; Microbial utilization of the industrial wastewater pollutants 2-ethylhexylthioglycolic acid and iso-octylthioglycolic acid by aerobic Gram-negative bacteria. Biodegradation
    [Google Scholar]
  49. Tsutsumi H., Okada S., Oishi T. 1998; A potentially biodegradable polyamide containing disulfide bonds as a positive material for secondary batteries. Electrochim Acta 43:427–429
    [Google Scholar]
  50. Tuan Y.-H., Phillips R. D. 1997; Optimized determination of cystine/cysteine and acid-stable amino acids from a single hydrolysate of casein- and sorghum-based diet and digesta samples. J Agric Food Chem 45:3535–3540
    [Google Scholar]
  51. Williams C. H. Jr 1992; Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase—a family of flavoenzyme transhydrogenases. In Chemistry and Biochemistry of Flavoenzymes vol. III pp 121–211 Edited by Muller F. Boca Raton, FL: CRC Press;
    [Google Scholar]
  52. Wübbeler J. H., Lütke-Eversloh T., Vandamme P., Van Trappen S., Steinbüchel A. 2006; Tetrathiobacter mimigardefordensis sp. nov., isolated from compost, a betaproteobacterium capable of utilizing the organic disulfide 3,3′-dithiodipropionic acid. Int J Syst Evol Microbiol 56:1305–1310
    [Google Scholar]
  53. Wübbeler J. H., Bruland N., Kretschmer K., Steinbüchel A. 2008; A novel pathway for the catabolism of the organic sulfur compound 3,3′-dithiodipropionic acid via 3-mercaptopropionic acid and 3-sulfinopropionic acid to propionyl-CoA by the aerobic bacterium Tetrathiobacter mimigardefordensis strain DPN7. Appl Environ Microbiol 74:4028–4035
    [Google Scholar]
  54. Yamada H., Kobayahashi M. 1996; Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036178-0
Loading
/content/journal/micro/10.1099/mic.0.036178-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed