1887

Abstract

One hundred and twenty pathogenic isolates of pv. phaseolicola recovered in Spain were subjected to biochemical and genomic typing, and investigated for virulence gene complement. Fifty-six were recovered from common beans () of the type Granja Asturiana, grown in a northern Spanish region (Asturias), and 64 from other common beans cultured in the neighbouring region of Castilla y León. Typing by I digestion followed by pulsed-field gel electrophoresis revealed 27 profiles, with only three being common to both regions. Relationships between profiles distributed the isolates into two clusters: A (subdivided into subclusters A1 and A2) and B. Cluster A included all isolates from Granja Asturiana and about a quarter of the isolates from Castilla y León. Isolates from cluster A were negative for mannitol utilization and hybridized to probes for the region responsible for phaseolotoxin production. Isolates that grouped in cluster B, which were only found in Castilla y León, were able to utilize mannitol but did not hybridize to probes for the region. Separation of the isolates into three genomic groups, subsequently termed PphA1, PphA2 and PphB, was also supported by effector gene complement and location. In PphB, all effector genes tested (, , and ) mapped on chromosomal fragments, but faint hybridization of with plasmids of about 40 kb was also observed. In PphA mapped on the chromosome; in PphA1 and were carried on virulence plasmids (most of approx. 125 kb) and was not detected, while in PphA2 the three genes were located on plasmids (approx. 75–160 kb). These results can be used as a framework to investigate the basis of regional variation in population structure, and for further epidemiological surveillance of pv. phaseolicola.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036152-0
2010-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1795.html?itemId=/content/journal/micro/10.1099/mic.0.036152-0&mimeType=html&fmt=ahah

References

  1. Aguilera S., López-López K., Nieto Y., Garcidueñas-Piña R., Hernández-Guzmán G., Hernández-Flores J. L., Murillo J., álvarez-Morales A. 2007; Functional characterization of the gene cluster from Pseudomonas syringae pv. phaseolicola NPS3121 involved in synthesis of phaseolotoxin. J Bacteriol 189:2834–2843
    [Google Scholar]
  2. Alfano J. R., Charkowski A. O., Deng W. L., Badel J. L., Petnicki-Ocwieja T., van Dijk K., Collmer A. 2000; The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97:4856–4861
    [Google Scholar]
  3. Barton B. M., Harding G. P., Zuccarelli A. J. 1995; A general method for detecting and sizing large plasmids. Anal Biochem 226:235–240
    [Google Scholar]
  4. Bender C. L., Alarcón-Chaidez F., Gross D. C. 1999; Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292
    [Google Scholar]
  5. Deneer H. G., Boychuk I. 1991; Species-specific detection of Listeria monocytogenes by DNA amplification. Appl Environ Microbiol 57:606–609
    [Google Scholar]
  6. Ferguson A., Johnston J. 1980; Phaseolotoxin: chlorosis, ornithine accumulation and inhibition of ornithine carbamoyltransferase in different plants. Physiol Plant Pathol 16:269–275
    [Google Scholar]
  7. Fey P. D., Rupp M. E. 2003; Molecular epidemiology in the public health and hospital environments. In Clinics in Laboratory Medicine, Molecular Methods in Diagnostic Microbiology pp 885–901 Edited by Hinrichs S. H., Wisecarver J. Philadelphia: W. B. Saunders;
    [Google Scholar]
  8. Genka H., Baba T., Tsuda M., Kanaya S., Mori H., Yoshida T., Noguchi M. T., Tsuchiya K., Sawada H. 2006; Comparative analysis of argK-tox clusters and their flanking regions in phaseolotoxin-producing Pseudomonas syringae pathovars. J Mol Evol 63:401–414
    [Google Scholar]
  9. Goering R. 2004; Pulsed-field gel electrophoresis. In Molecular Microbiology: Diagnostic Principles and Practice pp 185–196 Edited by Persing D. H., Tenover F. C., Versalovic J., Tang Y.-W., Unger E. R., Relman D. A., White T. J. Washington DC: American Society for Microbiology;
    [Google Scholar]
  10. González A. J., Landeras E., Mendoza M. C. 2000; Pathovars of Pseudomonas syringae causing bacterial brown spot and halo blight in Phaseolus vulgaris L. are distinguishable by ribotyping. Appl Environ Microbiol 66:850–854
    [Google Scholar]
  11. González A. J., Ordax M., Mendoza M. 2002; Evaluación de los iniciadores del método BIO-PCR sobre aislamientos fitopatógenos de Pseudomonas aisladas de judía común. Bol Sanid Veg Plagas 28:51–58
    [Google Scholar]
  12. González A. I., Pérez de la Vega M., Ruiz M. L., Polanco C. 2003; Analysis of the argK-tox gene cluster in nontoxigenic strains of Pseudomonas syringae pv. phaseolicola. Appl Environ Microbiol 69:4979–4982
    [Google Scholar]
  13. Goszczynska T., Serfontein J. J. 1998; Milk–Tween agar, a semiselective medium for isolation and differentiation of Pseudomonas syringae pv. syringae, Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. J Microbiol Methods 32:65–72
    [Google Scholar]
  14. Grothues D., Tummler B. 1991; New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analysis of Pseudomonas species. Mol Microbiol 5:2763–2776
    [Google Scholar]
  15. Güven K., Jones J. B., Momol M. T., Dickstein E. 2004; Phenotypic and genetic diversity among Pseudomonas syringae pv. phaseolicola. J Phytopathol 152:658–666
    [Google Scholar]
  16. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  17. Hunter S. B., Vauterin P., Lambert-Fair M. A., Van Duyne M. S., Kubota K., Graves L., Wrigley D., Barrett T., Ribot E. 2005; Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 43:1045–1050
    [Google Scholar]
  18. Jackson R. W., Athanassopoulos E., Tsiamis G., Mansfield J. W., Sesma A., Arnold D. L., Gibbon M. J., Murillo J., Taylor J. D., Vivian A. 1999; Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci U S A 96:10875–10880
    [Google Scholar]
  19. Jansing H., Rudolph K. 1990; A sensitive and quick test for determination of bean seed infestation by Pseudomonas syringae pv. phaseolicola. Z Pflanzenkr Pflanzenschutz 97:42–55
    [Google Scholar]
  20. Joardar V., Lindeberg M., Jackson R. W., Selengut J., Dodson R., Brinkac L. M., Daugherty S. C., Deboy R., Durkin A. S. other authors 2005; Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187:6488–6498
    [Google Scholar]
  21. Lelliott R. A., Billing E., Hayward A. C. 1966; A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 29:470–489
    [Google Scholar]
  22. Lindeberg M., Stavrinides J., Chang J. H., Alfano J. R., Collmer A., Dangl J. L., Greenberg J. T., Mansfield J. W., Guttman D. S. 2005; Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae. Mol Plant Microbe Interact 18:275–282
    [Google Scholar]
  23. Lindeberg M., Cartinhour S., Myers C., Schechter L., Schneider D., Collmer A. 2006; Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol Plant Microbe Interact 19:1151–1158
    [Google Scholar]
  24. Marques A., Corbière R., Gardan L., Tourte C., Manceau C., Taylor J., Samson R. 2000; Multiphasic approach for the identification of the different classification levels of Pseudomonas savastanoi pv. phaseolicola. Eur J Plant Pathol 106:715–734
    [Google Scholar]
  25. Moore R., Niemczura W., Kwok O., Patil S. S. 1984; Inhibitors of ornithine carbamoyltransferase from Pseudomonas syringae pv. phaseolicola. Revised structure of phaseolotoxin. Tetrahedron Lett 25:3931–3934
    [Google Scholar]
  26. Mosqueda G., Van den Broeck G., Saucedo O., Bailey A. M., álvarez-Morales A., Herrera-Estrella L. 1990; Isolation and characterization of the gene from Pseudomonas syringae pv. phaseolicola encoding the phaseolotoxin-insensitive ornithine carbamoyltransferase. Mol Gen Genet 222:461–466
    [Google Scholar]
  27. Noval C. 1991; Medios de cultivo y pruebas de diagnóstico. In Manual de Laboratorio. Diagnóstico de Hongos, Bacterias y Nematodos Fitopatógenos pp 379–410 Madrid: MAPA;
    [Google Scholar]
  28. Oguiza J. A., Rico A., Rivas L. A., Sutra L., Vivian A., Murillo J. 2004; Pseudomonas syringae pv. phaseolicola can be separated into two genetic lineages distinguished by the possession of the phaseolotoxin biosynthetic cluster. Microbiology 150:473–482
    [Google Scholar]
  29. Palleroni N. 1984; Genus I. Pseudomonas Migula 1894, 237AL. In Bergey' s Manual of Systematic Bacteriology vol. 1 pp 141–199 Edited by Krieg N. J., Holt J. G. Baltimore: Wiliams & Wilkins;
    [Google Scholar]
  30. Patil S. S., Kolattukudy P. E., Dimond A. E. 1970; Inhibition of ornithin carbamyl transferase from bean plants by the toxin of Pseudomonas phaseolicola. Plant Physiol 46:752–753
    [Google Scholar]
  31. Patil S. S., Hayward A., Emmons R. 1974; An ultraviolet-induced nontoxigenic mutant of Pseudomonas phaseolicola of altered pathogenicity. Phytopathology 64:590–595
    [Google Scholar]
  32. Rainey P. B., Bailey M. J., Thompson I. P. 1994; Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field-grown sugar beet. Microbiology 140:2315–2331
    [Google Scholar]
  33. Rico A., López R., Asensio C., Aizpún M. T., Asensio S. M. M. C., Murillo J. 2003; Nontoxigenic strains of Pseudomonas syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93:1553–1559
    [Google Scholar]
  34. Rudolph K. 1995; Pseudomonas syringae pathovars. In Pathogenesis and Host Specificity in Plant Diseases pp 47–138 Edited by Singh U. S, Singh R. P., Kohmoto K. Oxford: Elsevier;
    [Google Scholar]
  35. Saettler A. 1991; Diseases caused by bacteria. In Compendium of Bean Diseases pp 29–32 Edited by Hall R. St Paul, MN: APS Press;
    [Google Scholar]
  36. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  37. Sawada H., Kanaya S., Tsuda M., Suzuki F., Azegami K., Saitou N. 2002; A phylogenomic study of the OCTase genes in Pseudomonas syringae pathovars: the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes. J Mol Evol 54:437–457
    [Google Scholar]
  38. Schaad N. 1988 Laboratory Guide for Identification of Plant Pathogenic Bacteria, 2nd edn. St Paul, MN: APS Press;
  39. Schaad N. W., Cheong S. S., Tamaki S., Hatziloukas E., Panopoulos N. J. 1995; A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85:243–248
    [Google Scholar]
  40. Stevens C., Bennett M. A., Athanassopoulos E., Tsiamis G., Taylor J. D., Mansfield J. W. 1998; Sequence variations in alleles of the avirulence gene avrPphE.R2 from Pseudomonas syringae pv. phaseolicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence. Mol Microbiol 29:165–177
    [Google Scholar]
  41. Taylor J., Teverson D., Allen D., Pastor-Corrales M. 1996; Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45:469–478
    [Google Scholar]
  42. Tsiamis G., Mansfield J. W., Hockenhull R., Jackson R. W., Sesma A., Athanassopoulos E., Bennett M. A., Stevens C., Vivian A. other authors 2000; Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J 19:3204–3214
    [Google Scholar]
  43. Zhang Y. X., Patil S. S. 1997; The phtE locus in the phaseolotoxin gene cluster has ORFs with homologies to genes encoding amino acid transferases, the AraC family of transcriptional factors, and fatty acid desaturases. Mol Plant Microbe Interact 10:947–960
    [Google Scholar]
  44. Zhou C., Yang Y., Jong A. Y. 1990; Mini-prep in ten minutes. Biotechniques 8:172–173
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036152-0
Loading
/content/journal/micro/10.1099/mic.0.036152-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error