1887

Abstract

CRISPR (clustered regularly interspaced short palindromic repeats) and CAS (CRISPR-associated sequence) proteins are constituents of a novel genetic barrier that limits horizontal gene transfer in prokaryotes by means of an uncharacterized mechanism. The fundamental discovery of small RNAs as the guides of the defence apparatus arose as a result of studies. However, a survey of the system diversity in this species in order to further contribute to the understanding of the CRISPR mode of action has not yet been performed. Here we describe two CRISPR/CAS systems found in , following the analysis of 100 strains representative of the species' diversity. Our results substantiate different levels of activity between loci of both CRISPR types, as well as different target preferences and CRISPR relevances for particular groups of strains. Interestingly, the data suggest that the degeneration of one CRISPR/CAS system in ancestors could have been brought about by self-interference.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036046-0
2010-05-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1351.html?itemId=/content/journal/micro/10.1099/mic.0.036046-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Andersson, A. F. & Banfield, J. F. ( 2008; ). Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050.[CrossRef]
    [Google Scholar]
  3. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. & Horvath, P. ( 2007; ). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712.[CrossRef]
    [Google Scholar]
  4. Bingen, E., Picard, B., Brahimi, N., Mathy, S., Desjardins, P., Elion, J. & Denamur, E. ( 1998; ). Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J Infect Dis 177, 642–650.[CrossRef]
    [Google Scholar]
  5. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. ( 2005; ). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561.[CrossRef]
    [Google Scholar]
  6. Boyd, E. F. & Hartl, D. L. ( 1998; ). Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol 180, 1159–1165.
    [Google Scholar]
  7. Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., Dickman, M. J., Makarova, K. S., Koonin, E. V. & van der Oost, J. ( 2008; ). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964.[CrossRef]
    [Google Scholar]
  8. Deveau, H., Barrangou, R., Garneau, J. E., Labonté, J., Fremaux, C., Boyaval, P., Romero, D. A., Horvath, P. & Moineau, S. ( 2008; ). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390–1400.[CrossRef]
    [Google Scholar]
  9. Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K. & Mattick, J. S. ( 1991; ). “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19, 4008 [CrossRef]
    [Google Scholar]
  10. Fricke, W. F., Wright, M. S., Lindell, A. H., Harkins, D. M., Baker-Austin, C., Ravel, J. & Stepanauskas, R. ( 2008; ). Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate Escherichia coli SMS-3–5. J Bacteriol 190, 6779–6794.[CrossRef]
    [Google Scholar]
  11. Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. ( 2005; ). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput Biol 1, e60 [CrossRef]
    [Google Scholar]
  12. Hale, C., Kleppe, K., Terns, R. M. & Terns, M. P. ( 2008; ). Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14, 2572–2579.[CrossRef]
    [Google Scholar]
  13. Heidelberg, J. F., Nelson, W. C., Schoenfeld, T. & Bhaya, D. ( 2009; ). Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS One 4, e4169 [CrossRef]
    [Google Scholar]
  14. Held, N. L. & Whitaker, R. J. ( 2009; ). Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol 11, 457–466.[CrossRef]
    [Google Scholar]
  15. Horvath, P., Romero, D. A., Coûté-Monvoisin, A. C., Richards, M., Deveau, H., Moineau, S., Boyaval, P., Fremaux, C. & Barrangou, R. ( 2008; ). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190, 1401–1412.[CrossRef]
    [Google Scholar]
  16. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. ( 1987; ). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429–5433.
    [Google Scholar]
  17. Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. ( 2002; ). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565–1575.[CrossRef]
    [Google Scholar]
  18. Kunin, V., Sorek, R. & Hugenholtz, P. ( 2007; ). Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8, R61 [CrossRef]
    [Google Scholar]
  19. Kutter, E. ( 2009; ). Phage host range and efficiency of plating. Methods Mol Biol 501, 141–149.
    [Google Scholar]
  20. Lillestøl, R. K., Redder, P., Garrett, R. A. & Brügger, K. ( 2006; ). A putative viral defence mechanism in archaeal cells. Archaea 2, 59–72.[CrossRef]
    [Google Scholar]
  21. Lillestøl, R. K., Shah, S. A., Brügger, K., Redder, P., Phan, H., Christiansen, J. & Garrett, R. A. ( 2009; ). CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 72, 259–272.[CrossRef]
    [Google Scholar]
  22. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. ( 2006; ). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1, 7 [CrossRef]
    [Google Scholar]
  23. Marraffini, L. A. & Sontheimer, E. J. ( 2008; ). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845.[CrossRef]
    [Google Scholar]
  24. Mojica, F. J. M., Juez, G. & Rodríguez-Valera, F. ( 1993; ). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9, 613–621.[CrossRef]
    [Google Scholar]
  25. Mojica, F. J. M., Díez-Villaseñor, C., Soria, E. & Juez, G. ( 2000; ). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36, 244–246.[CrossRef]
    [Google Scholar]
  26. Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. ( 2005; ). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174–182.[CrossRef]
    [Google Scholar]
  27. Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. & Almendros, C. ( 2009; ). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740.[CrossRef]
    [Google Scholar]
  28. Nakata, A., Amemura, M. & Makino, K. ( 1989; ). Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J Bacteriol 171, 3553–3556.
    [Google Scholar]
  29. Ochman, H. & Selander, R. K. ( 1984; ). Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157, 690–693.
    [Google Scholar]
  30. Ogura, Y., Ooka, T., Iguchi, A., Toh, H., Asadulghani, M., Oshima, K., Kodama, T., Abe, H., Nakayama, K. & other authors ( 2009; ). Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A 106, 17939–17944.[CrossRef]
    [Google Scholar]
  31. Picard, B., García, J. S., Gouriou, S., Duriez, P., Brahimi, N., Bingen, E., Elion, J. & Denamur, E. ( 1999; ). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67, 546–553.
    [Google Scholar]
  32. Pourcel, C., Salvignol, G. & Vergnaud, G. ( 2005; ). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663.[CrossRef]
    [Google Scholar]
  33. Pupo, G. M., Lan, R. & Reeves, P. R. ( 2000; ). Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci U S A 97, 10567–10572.[CrossRef]
    [Google Scholar]
  34. Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M., Gilmour, M. N. & Whittam, T. S. ( 1986; ). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51, 873–884.
    [Google Scholar]
  35. Semenova, E., Nagornykh, M., Pyatnitskiy, M., Artamonova, I. I. & Severinov, K. ( 2009; ). Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 296, 110–116.[CrossRef]
    [Google Scholar]
  36. Sorek, R., Kunin, V. & Hugenholtz, P. ( 2008; ). CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6, 181–186.[CrossRef]
    [Google Scholar]
  37. Turner, S. M., Chaudhuri, R. R., Jiang, Z. D., DuPont, H., Gyles, C., Penn, C. W., Pallen, M. J. & Henderson, I. R. ( 2006; ). Phylogenetic comparisons reveal multiple acquisitions of the toxin genes by enterotoxigenic Escherichia coli strains of different evolutionary lineages. J Clin Microbiol 44, 4528–4536.[CrossRef]
    [Google Scholar]
  38. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. ( 2009; ). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34, 401–407.[CrossRef]
    [Google Scholar]
  39. Vestergaard, G., Shah, S. A., Bize, A., Reitberger, W., Reuter, M., Phan, H., Briegel, A., Rachel, R., Garrett, R. A. & Prangishvili, D. ( 2008; ). Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system. J Bacteriol 190, 6837–6845.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036046-0
Loading
/content/journal/micro/10.1099/mic.0.036046-0
Loading

Data & Media loading...

Supplements

[PDF](83 KB)

PDF

[PDF](491 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error