1887

Abstract

In anaerobic enrichment cultures for phototrophic nitrite-oxidizing bacteria from different freshwater sites, two different cell types, i.e. non-motile cocci and motile, rod-shaped bacteria, always outnumbered all other bacteria. Most-probable-number (MPN) dilution series with samples from two freshwater sites yielded only low numbers (≤3×10 cm) of phototrophic nitrite oxidizers. Slightly higher numbers (about 10 cm) were found in activated sewage sludge. Anaerobic phototrophic oxidation of nitrite was studied with two different isolates, the phototrophic sulfur bacterium strain KS1 and the purple nonsulfur bacterium strain LQ17, both of which were isolated from activated sludge collected from the municipal sewage treatment plant in Konstanz, Germany. Strain KS1 converted 1 mM nitrite stoichiometrically to nitrate with concomitant formation of cell matter within 2–3 days, whereas strain LQ17 oxidized only up to 60 % of the given nitrite to nitrate within several months with the concomitant formation of cell biomass. Nitrite oxidation to nitrate was strictly light-dependent and required the presence of molybdenum in the medium. Nitrite was oxidized in both the presence and absence of oxygen. Nitrite inhibited growth at concentrations higher than 2 mM. Hydroxylamine and hydrazine were found to be toxic to the phototrophs in the range 5–50 μM and did not stimulate phototrophic growth. Based on morphology, substrate-utilization pattern, absorption spectra, and 16S rRNA gene sequence similarity, strain KS1 was assigned to the genus and strain LQ17 to the genus . Also, strains DSM 217 and DSM 221 were found to oxidize nitrite to nitrate with concomitant growth. We conclude that the ability to use nitrite phototrophically as electron donor is widespread in nature, but low MPN counts indicate that its contribution to nitrite oxidation in the studied habitats is rather limited.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036004-0
2010-08-01
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2428.html?itemId=/content/journal/micro/10.1099/mic.0.036004-0&mimeType=html&fmt=ahah

References

  1. American Public Health Association 1965; Standard Methods for the Examination of Water and Wastewater Including Bottom Sediments and Sludge pp604–609 New York: American Public Health Association;
  2. Asao M., Takaichi S., Madigan M. T.. 2007; Thiocapsa imhoffii, sp. nov., an alkaliphilic purple sulfur bacterium of the family Chromatiaceae from Soap Lake, Washington (USA. Arch Microbiol188:665–675
    [Google Scholar]
  3. Bock E., Koops H.-P., Ahlers B., Harms H.. 1991; Oxidation of inorganic nitrogen compounds as energy source. In The Prokaryotes, 2nd edn. pp414–430 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.. New York: Springer;
  4. Broda E.. 1977; Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol17:491–493
    [Google Scholar]
  5. Bussmann I., Philipp B., Schink B.. 2001; Factors influencing the cultivability of lake water bacteria. J Microbiol Methods47:41
    [Google Scholar]
  6. Castillo F., Cárdenas J.. 1982; Nitrate reduction by photosynthetic purple bacteria. Photosynth Res3:3–18
    [Google Scholar]
  7. Caumette P., Guyoneaud R., Imhoff J. F., Süling J., Gorlenko V.. 2004; Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int J Syst Evol Microbiol54:1031–1036
    [Google Scholar]
  8. Cline J. D.. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr14:454–458
    [Google Scholar]
  9. Cusanovich M. A., Bartsch R. G., Kamen M. D.. 1968; Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores. Biochim Biophys Acta153:397–417
    [Google Scholar]
  10. de Wit R., van Gemerden H.. 1987; Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol45:117–126
    [Google Scholar]
  11. Dunstan R. H., Kelley B. C., Nicholas D. J.. 1982; Fixation of dinitrogen derived from denitrification of nitrate in a photosynthetic bacterium, Rhodopseudomonas sphaeroides formasp. denitrificans. J Bacteriol150:100–104
    [Google Scholar]
  12. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C.. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res17:7843–7853
    [Google Scholar]
  13. Fukuoka M., Fukumori Y., Yamanaka T.. 1987; Nitrobacter winogradskyi cytochrome a1 c1 is an iron–sulfur molybdoenzyme having hemes a and c1. J Biochem102:525–530
    [Google Scholar]
  14. Gogotov I. N., Glinskii V. P.. 1973; Comparative study of nitrogen fixation in the purple bacteria. Mikrobiologiia42:983–986
    [Google Scholar]
  15. Griffin B. M., Schott J., Schink B.. 2007; Nitrite, an electron donor for anoxygenic photosynthesis. Science316:1870
    [Google Scholar]
  16. Henckel T., Friedrich M., Conrad R.. 1999; Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol65:1980–1990
    [Google Scholar]
  17. Herbert R. A.. 1985; Development of mass blooms of photosynthetic bacteria on sheltered beaches in Scapa Flow, Orkney Islands. Proc R Soc Edinburgh87B:15–25
    [Google Scholar]
  18. Herbert R. A., Ranchou-Peyruse A., Duran R., Guyoneaud R., Schwabe S.. 2005; Characterization of purple sulfur bacteria from the South Andros Black Hole cave system: highlights taxonomic problems for ecological studies among the genera Allochromatium and Thiocapsa. Environ Microbiol7:1260–1268
    [Google Scholar]
  19. Hougardy A., Tindall B. J., Klemme J.-H.. 2000; Rhodopseudomonas rhenobacensis sp. nov., a new nitrate-reducing purple non-sulfur bacterium. Int J Syst Bacteriol50:985–992
    [Google Scholar]
  20. Klemme J. H.. 1979; Occurrence of assimilatory nitrate reduction in phototrophic bacteria of the genera Rhodospirillum and Rhodopseudomonas. Microbiologica2:415–420
    [Google Scholar]
  21. Kondratieva E. N., Zhukov V. G., Ivanovsky R. N., Petrushkova Y. P., Monosov E. Z.. 1976; The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol108:287–292
    [Google Scholar]
  22. Kroneck P. M. H., Abt D. J.. 2002; Molybdenum in nitrate reductase and nitrite oxidoreductase. In Molybdenum and Tungsten. Their Roles in Biological Processes pp369–403 Edited by Sigel A., Sigel H.. New York: M. Dekker;
  23. Krüger B., Meyer O., Nagel M., Andreesen J. R., Meincke M., Bock E., Blümle S., Zumft W. G.. 1987; Evidence for the presence of bactopterin in the eubacterial molybdoenzymes nicotinic acid dehydrogenase, nitrite oxidoreductase, and respiratory nitrate reductase. FEMS Microbiol Lett48:225–227
    [Google Scholar]
  24. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A82:6955–6959
    [Google Scholar]
  25. Lee D. Y., Ramos A., Macomber L., Shapleigh J. P.. 2002; Taxis response of various denitrifying bacteria to nitrate and nitrite. Appl Environ Microbiol68:2140–2147
    [Google Scholar]
  26. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371
    [Google Scholar]
  27. Madigan M. T., Martinko J. M.. 2006; Brock Biology of Microorganisms. , 11th edn. p.992 Upper Saddle River, NJ: Pearson Prentice Hall;
  28. Madigan M., Cox S. S., Stegeman R. A.. 1984; Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol157:73–78
    [Google Scholar]
  29. Malofeeva I. V., Laush D.. 1976; Utilization of nitrogen compounds by phototrophic bacteria. Mikrobiologiia45:512–514
    [Google Scholar]
  30. Malofeeva I. V., Bogorov L. V., Gogotov I. N.. 1974; Utilization of nitrates by purple bacteria. Mikrobiologiia43:967–972
    [Google Scholar]
  31. Meincke M., Bock E., Kastrau D., Kroneck P. M. H.. 1992; Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role. Arch Microbiol158:127–131
    [Google Scholar]
  32. Olmo-Mira M. F., Cabello P., Pino C., Martínez-Luque M., Richardson D. J., Castillo F., Roldán M. D., Moreno-Vivián C.. 2006; Expression and characterization of the assimilatory NADH-nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Arch Microbiol186:339–344
    [Google Scholar]
  33. Olson J. M.. 1970; The evolution of photosynthesis. Science168:438–446
    [Google Scholar]
  34. Pfennig N.. 1967; Photosynthetic bacteria. Annu Rev Microbiol21:285–324
    [Google Scholar]
  35. Pfennig N.. 1976; Phototrophic green and purple bacteria: adaption to the aquatic environment and role in the sulfur cycle. Proc Soc Gen Microbiol4:19–20
    [Google Scholar]
  36. Pfennig N.. 1977; Phototrophic green and purple bacteria: a comparative, systematic survey. Annu Rev Microbiol31:275–290
    [Google Scholar]
  37. Pfennig N.. 1978; General physiology and ecology of photosynthetic bacteria. In The Photosynthetic Bacteria chapter 1 pp3–18 Edited by Sistrom W. R., Clayton R. K.. New York: Plenum Press;
  38. Pfennig N., Biebl H.. 1976; Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol110:3–12
    [Google Scholar]
  39. Pino C., Olmo-Mira F., Cabello P., Martínez-Luque M., Castillo F., Roldán M. D., Moreno-Vivián C.. 2006; The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1. Biochem Soc Trans34:127–129
    [Google Scholar]
  40. Preuss M., Klemme J.-H.. 1983; Purification and characterization of a dissimilatory nitrite reductase from the phototrophic bacterium Rhodopseudomonas palustris. Z Naturforsch C38:933–938
    [Google Scholar]
  41. Puchkova N. N., Imhoff J. F., Gorlenko V. M.. 2000; Thiocapsa litoralis sp. nov., a new purple sulphur bacterium from microbial mats from the White Sea. Int J Syst Evol Microbiol50:1441–1447
    [Google Scholar]
  42. Satoh T., Hoshino Y., Kitamura H.. 1976; Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch Microbiol108:265–269
    [Google Scholar]
  43. Schaub B. E. M., van Gemerden H.. 1994; Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina M1. FEMS Microbiol Ecol13:185–196
    [Google Scholar]
  44. Siefert E., Irgens R. L., Pfennig N.. 1978; Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol35:38–44
    [Google Scholar]
  45. Stackebrandt E., Rainey F. A., Ward-Rainey N.. 1996; Anoxygenic phototrophy across the phylogenetic spectrum: current understanding and future perspectives. Arch Microbiol166:211–223
    [Google Scholar]
  46. Stanier R. Y., Pfennig N., Trüper H. G.. 1981; Introduction to the phototrophic prokaryotes. In The Prokaryotes, chapter 7 pp197–211 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G.. Berlin, Heidelberg and New York: Springer Verlag;
    [Google Scholar]
  47. Stolz J. F., Basu P.. 2002; Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem3:198–206
    [Google Scholar]
  48. Strohm T. O., Griffin B., Zumft W., Schink B.. 2007; Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol73:1420–1424
    [Google Scholar]
  49. Thauer R. K., Jungermann K., Decker K.. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev41:100–180
    [Google Scholar]
  50. Trüper H. G., Pfennig N.. 1981; Characterization and identification of the anoxygenic phototrophic bacteria. In The Prokaryotes, chapter 18 pp299–312 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G.. Berlin, Heidelberg and New York: Springer Verlag;
    [Google Scholar]
  51. Van Trappen S., Mergaert J., Swings J.. 2004; Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov.,new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol54:1263–1269
    [Google Scholar]
  52. Visscher P. T., Nijburg J. W., van Gemerden H.. 1990; Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol155:75–81
    [Google Scholar]
  53. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703
    [Google Scholar]
  54. Widdel F., Bak F.. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes pp3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
  55. Widdel F., Schnell S., Heising S., Ehrenreich A., Aßmus B., Schink B.. 1993; Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature362:834–836
    [Google Scholar]
  56. Yildiz F. H., Gest H., Bauer C. E.. 1991; Attenuated effect of oxygen on photopigment synthesis in Rhodospirillum centenum. J Bacteriol173:5502–5506
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036004-0
Loading
/content/journal/micro/10.1099/mic.0.036004-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error