1887

Abstract

Immune adult horses have CD8 cytotoxic T lymphocytes (CTLs) that recognize and lyse -infected cells in an equine lymphocyte alloantigen (ELA)-A [classical major histocompatibility complex (MHC) class I]-unrestricted fashion. As protein antigens are MHC class I-restricted, the lack of restriction suggests that the bacterial antigens being recognized by the host are not proteins. The goals of this study were to test the hypothesis that these CTLs recognize unique cell-wall lipids related to mycobacterial lipids. Initial experiments showed that treatment of soluble antigen with broadly reactive proteases did not significantly diminish the ability of the antigen to stimulate -specific CTLs. -specific CTLs were also shown to lyse target cells (equine macrophages) pulsed with an lipid extract. Analysis of the lipid by TLC and MS (MALDI-TOF and ES) indicated that the extracted antigen consisted of three primary fractions: trehalose monomycolate (TMM), trehalose dimycolate (TDM) and cardiolipin (CL). ELA-A-mismatched cells pulsed with purified TMM and CL, but not the TDM fraction, were recognized and lysed by -specific CTLs. Because of their role in immune clearance and pathogenesis, transcription of the cytokines gamma interferon (IFN-) and interleukin-4 (IL-4) was also measured in response to lipids by using real-time PCR; elevated IFN-, but not IL-4, was associated with host clearance of the bacteria. The whole-cell lipid and all three lipid fractions resulted in marked increases in IFN- transcription, but no increase in IL-4 transcription. Together, these data support the hypothesis that immune recognition of unique lipids in the bacterial cell wall is an important component of the protective immune response to . The results also identify potential lipid antigens not previously shown to be recognized by CTLs in an important, naturally occurring actinomycete bacterial pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035915-0
2010-06-01
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1836.html?itemId=/content/journal/micro/10.1099/mic.0.035915-0&mimeType=html&fmt=ahah

References

  1. Beckman E. M., Porcelli S. A., Morita C. T., Behar S. M., Furlong S. T., Brenner M. B. 1994; Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372:691–694
    [Google Scholar]
  2. Bhatt A., Fujiwara N., Bhatt K., Gurcha S. S., Kremer L., Chen B., Chan J., Porcelli S. A., Kobayashi K. other authors 2007; Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci U S A 104:5157–5162
    [Google Scholar]
  3. Boom W. H., Canaday D. H., Fulton S. A., Gehring A. J., Rojas R. E., Torres M. 2003; Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis (Edinb 83:98–106
    [Google Scholar]
  4. Brennan P. J., Nikaido H. 1995; The envelope of mycobacteria. Annu Rev Biochem 64:29–63
    [Google Scholar]
  5. Bricard G., Porcelli S. A. 2007; Antigen presentation by CD1 molecules and the generation of lipid-specific T cell immunity. Cell Mol Life Sci 64:1824–1840
    [Google Scholar]
  6. Brigl M., Brenner M. B. 2004; CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890
    [Google Scholar]
  7. Canaday D. H., Wilkinson R. J., Li Q., Harding C. V., Silver R. F., Boom W. H. 2001; CD4+ and CD8+ T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J Immunol 167:2734–2742
    [Google Scholar]
  8. Catucci L., Depalo N., Lattanzio V. M., Agostiano A., Corcelli A. 2004; Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochemistry 43:15066–15072
    [Google Scholar]
  9. Dascher C. C., Hiromatsu K., Xiong X., Morehouse C., Watts G., Liu G., McMurray D. N., LeClair K. P., Porcelli S. A., Brenner M. B. 2003; Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int Immunol 15:915–925
    [Google Scholar]
  10. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127
    [Google Scholar]
  11. Fischer K., Chatterjee D., Torrelles J., Brennan P. J., Kaufmann S. H. E., Schaible U. E. 2001; Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. J Immunol 167:2187–2192
    [Google Scholar]
  12. Folch J., Lees M., Sloane Stanley G. H. 1957; A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509
    [Google Scholar]
  13. Grotzke J. E., Lewinsohn D. M. 2005; Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection. Microbes Infect 7:776–788
    [Google Scholar]
  14. Hava D. L., Brigl M., van den Elzen P., Zajonc D. M., Wilson I. A., Brenner M. B. 2005; CD1 assembly and the formation of CD1–antigen complexes. Curr Opin Immunol 17:88–94
    [Google Scholar]
  15. Hines M. T., Paasch K. M., Alperin D. C., Palmer G. H., Westhoff N. C., Hines S. A. 2001; Immunity to Rhodococcus equi: antigen-specific recall responses in the lungs of adult horses. Vet Immunol Immunopathol 79:101–113
    [Google Scholar]
  16. Hines S. A., Stone D. M., Hines M. T., Alperin D. C., Knowles D. P., Norton L. K., Hamilton M. J., Davis W. C., McGuire T. C. 2003; Clearance of virulent but not avirulent Rhodococcus equi from the lungs of adult horses is associated with intracytoplasmic gamma interferon production by CD4+ and CD8+ T lymphocytes. Clin Diagn Lab Immunol 10:208–215
    [Google Scholar]
  17. Hiromatsu K., Dascher C. C., Leclair K. P., Sugita M., Furlong S. T., Brenner M. B., Porcelli S. A. 2002; Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J Immunol 169:330–339
    [Google Scholar]
  18. Hondalus M. K. 1997; Pathogenesis and virulence of Rhodococcus equi. Vet Microbiol 56:257–268
    [Google Scholar]
  19. Hooper-McGrevy K. E., Wilkie B. N., Prescott J. F. 2005; Virulence-associated protein-specific serum immunoglobulin G-isotype expression in young foals protected against Rhodococcus equi pneumonia by oral immunization with virulent R. equi. Vaccine 23:5760–5767
    [Google Scholar]
  20. Kanaly S. T., Hines S. A., Palmer G. H. 1993; Failure of pulmonary clearance of Rhodococcus equi infection in CD4+ T-lymphocyte-deficient transgenic mice. Infect Immun 61:4929–4932
    [Google Scholar]
  21. Kanaly S. T., Hines S. A., Palmer G. H. 1995; Cytokine modulation alters pulmonary clearance of Rhodococcus equi and development of granulomatous pneumonia. Infect Immun 63:3037–3041
    [Google Scholar]
  22. Kanaly S. T., Hines S. A., Palmer G. H. 1996; Transfer of a CD4+ Th1 cell line to nude mice effects clearance of Rhodococcus equi from the lung. Infect Immun 64:1126–1132
    [Google Scholar]
  23. Karakousis P. C., Bishai W. R., Dorman S. E. 2004; Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell Microbiol 6:105–116
    [Google Scholar]
  24. Kurano S., Sugimoto N., Sumi Y., Sawai H., Kato Y., Kaneda K., Yano I. 1987; Newly isolated glycolipids from Rhodococcus terrae cell wall and their granuloma forming activities. Yakugaku Zasshi 107:46–52
    [Google Scholar]
  25. Li B., Rossman M. D., Imir T., Fusun Oner-Eyuboglu A., Wa Lee C., Biancaniella R., Carding S. R. 1996; Disease-specific changes in γδ T cell repertoire and function in patients with pulmonary tuberculosis. J Immunol 157:4222–4229
    [Google Scholar]
  26. Linder R. 1997; Rhodococcus equi and Arcanobacterium haemolyticum: two ‘coryneform’ bacteria increasingly recognized as agents of human infection. Emerg Infect Dis 3:145–153
    [Google Scholar]
  27. Lopez A. M., Hines M. T., Palmer G. H., Alperin D. C., Hines S. A. 2002; Identification of pulmonary T-lymphocyte and serum antibody isotype responses associated with protection against Rhodococcus equi. Clin Diagn Lab Immunol 9:1270–1276
    [Google Scholar]
  28. McGuire T. C., Tumas D. B., Byrne K. M., Hines M. T., Leib S. R., Brassfield A. L., O'Rourke K. I., Perryman L. E. 1994; Major histocompatibility complex-restricted CD8+ cytotoxic T lymphocytes from horses with equine infectious anemia virus recognize Env and Gag/PR proteins. J Virol 68:1459–1467
    [Google Scholar]
  29. Moody D. B., Porcelli S. A. 2003; Intracellular pathways of CD1 antigen presentation. Nat Rev Immunol 3:11–21
    [Google Scholar]
  30. Moody D. B., Reinhold B. B., Reinhold V. N., Besra G. S., Porcelli S. A. 1999; Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunol Lett 65:85–91
    [Google Scholar]
  31. Moody D. B., Briken V., Cheng T.-Y., Roura-Mir C., Guy M. R., Geho D. H., Tykocinski M. L., Besra G. S., Porcelli S. A. 2002; Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat Immunol 3:435–442
    [Google Scholar]
  32. Natsuhara Y., Yoshinaga J., Shogaki T., Sumi-Nishikawa Y., Kurano S., Kato Y., Kaneda K., Oka S., Yano I. 1990; Granuloma-forming activity and antitumor activity of newly isolated mycoloyl glycolipid from Rhodococcus terrae 70012 (Rt. GM-2). Microbiol Immunol 34:45–53
    [Google Scholar]
  33. Nishiuchi Y., Baba T., Yano I. 2000; Mycolic acids from Rhodococcus, Gordonia, and Dietzia. J Microbiol Methods 40:1–9
    [Google Scholar]
  34. Patton K. M., McGuire T. C., Fraser D. G., Hines S. A. 2004; Rhodococcus equi-infected macrophages are recognized and killed by CD8+ T lymphocytes in a MHC class I-unrestricted fashion. Infect Immun 72:7073–7083
    [Google Scholar]
  35. Patton K. M., McGuire T. C., Hines M. T., Mealey R. H., Hines S. A. 2005; Rhodococcus equi-specific cytotoxic T lymphocytes in immune horses and development in asymptomatic foals. Infect Immun 73:2083–2093
    [Google Scholar]
  36. Perez M. G. V., Vassilev T., Kemmerly S. A. 2002; Rhodococcus equi infection in transplant recipients: a case of mistaken identity and review of the literature. Transpl Infect Dis 4:52–56
    [Google Scholar]
  37. Porcelli S. A. 2001; Cutting glycolipids down to size. Nat Immunol 2:191–192
    [Google Scholar]
  38. Rahman M. T., Herron L. L., Kapur V., Meijer W. G., Byrne B. A., Ren J., Nicholson V. M., Prescott J. F. 2003; Partial genome sequencing of Rhodococcus equi ATCC 33701. Vet Microbiol 94:143–158
    [Google Scholar]
  39. Rao V., Fujiwara N., Porcelli S. A., Glickman M. S. 2005; Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535–543
    [Google Scholar]
  40. Roura-mir C., Moody D. B. 2003; Sorting out self and microbial lipid antigens for CD1. Microbes Infect 5:1137–1148
    [Google Scholar]
  41. Serbina N. V., Liu C.-C., Scanga C. A., Flynn J. L. 2000; CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J Immunol 165:353–363
    [Google Scholar]
  42. Siliciano R. F., Keegan A., Dintzis R., Dintzis H., Shin H. 1985; The interaction of nominal antigen with T cell antigen receptors. I. Specific binding of multivalent nominal antigen to cytolytic T cell clones. J Immunol 135:906–914
    [Google Scholar]
  43. Skinner M. A., Yuan S., Prestidge R., Chuk D., Watson J. D., Tan P. L. J. 1997; Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect Immun 65:4525–4530
    [Google Scholar]
  44. Stenger S., Modlin R. L. 1999; T cell mediated immunity to Mycobacterium tuberculosis. Curr Opin Microbiol 2:89–93
    [Google Scholar]
  45. Szereday L., Baliko Z., Szekeres-Bartho J. 2003; γ/ δ T cell subsets in patients with active Mycobacterium tuberculosis infection and tuberculin anergy. Clin Exp Immunol 131:287–291
    [Google Scholar]
  46. Takai S. 1997; Epidemiology of Rhodococcus equi infections: a review. Vet Microbiol 56:167–176
    [Google Scholar]
  47. Tonge P. J. 2000; Another brick in the wall. Nat Struct Biol 7:94–96
    [Google Scholar]
  48. Torres-Tortosa M., Arrizabalaga J., Villanueva J. L., Gálvez J., Leyes M., Valencia M. E., Flores J., Peña J. M., Pérez-Cecilia E. other authors 2003; Prognosis and clinical evaluation of infection caused by Rhodococcus equi in HIV-infected patients. Chest 123:1970–1976
    [Google Scholar]
  49. Ueda S., Fujiwara N., Naka T., Sakaguchi Y., Ozeki I., Yano T. 2001; Structure–activity relationship of mycoloyl glycolipids derived from Rhodococcussp. 4306. Microb Pathog 30: 91. 99
    [Google Scholar]
  50. Ulrichs T., Moody D. B., Grant E., Kaufmann S. H. E., Porcelli S. A. 2003; T-cell responses to CD1-presented lipid antigen in humans with Mycobacterium tuberculosis infection. Infect Immun 71:3076–3087
    [Google Scholar]
  51. Willcox B. E., Willcox C., Dover L., Besra G. S. 2007; Structures and functions of microbial lipid antigens presented by CD1. Curr Top Microbiol Immunol 314:73–110
    [Google Scholar]
  52. Zhang W., Lonning S. M., McGuire T. C. 1998; Gag protein epitopes recognized by ELA-A-restricted cytotoxic T lymphocytes from horses with long-term equine infectious anemia virus infection. J Virol 72:9612–9620
    [Google Scholar]
  53. Zinner S. H. 1999; Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on Gram-positive and resistant bacteria. Clin Infect Dis 29:490–494
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.035915-0
Loading
/content/journal/micro/10.1099/mic.0.035915-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error