1887

Abstract

is a Gram-negative anaerobic organism that plays a central role in the development of periodontal diseases. The progression of periodontitis is associated with a rise in pH of the gingival sulcus which promotes the growth and expression of virulence factors by periodontopathic bacteria. We have previously reported that the expression of specific cytoplasmic proteins is altered by a shift in growth pH. In the present study we have compared cell envelope protein expression of during chemostat growth at pH 7.2 and 7.8. From a total of 176 proteins resolved from the cell envelope, 15 were found to have altered expression in response to an increase in growth pH and were identified by MS. Upregulated proteins included an outer membrane porin which has been identified as playing a role in virulence, a periplasmic chaperone which assists in the folding of outer membrane proteins, and a transporter thought to be involved with iron uptake. Proteins downregulated at pH 7.8 were consistent with our previous findings that the bacterium reduces its catabolism of energy-yielding substrates in favour of energy-storage pathways. Among the downregulated proteins, two transporters which are involved in the uptake of C4 dicarboxylates and phosphate were identified. A putative protease and an enzyme associated with the metabolism of glutamate were also identified. A high proportion of the cell envelope proteins suggested by these data to play a role in the organism's response to alkaline growth pH may have arisen by lateral gene transfer. This would support the hypothesis that genes that provide an ability to adapt to the changing conditions of the oral environment may be readily shared between oral bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035881-0
2010-06-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1783.html?itemId=/content/journal/micro/10.1099/mic.0.035881-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Barker, H. A. ( 1981; ). Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50, 23–40.[CrossRef]
    [Google Scholar]
  3. Bartold, P. M., Gully, N. J., Zilm, P. S. & Rogers, A. H. ( 1991; ). Identification of components in Fusobacterium nucleatum chemostat-culture supernatants that are potent inhibitors of human gingival fibroblast proliferation. J Periodontal Res 26, 314–322.[CrossRef]
    [Google Scholar]
  4. Berven, F. S., Flikka, K., Jensen, H. B. & Eidhammer, I. ( 2004; ). BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res 32, W394–W399
    [Google Scholar]
  5. Bickel, M. & Cimasoni, G. ( 1985; ). The pH of human crevicular fluid measured by a new microanalytical technique. J Periodontal Res 20, 35–40.[CrossRef]
    [Google Scholar]
  6. Campostrini, N., Areces, L. B., Rappsilber, J., Pietrogrande, M. C., Dondi, F., Pastorino, F., Ponzoni, M. & Righetti, P. G. ( 2005; ). Spot overlapping in two-dimensional maps: a serious problem ignored for much too long. Proteomics 5, 2385–2395.[CrossRef]
    [Google Scholar]
  7. Conrads, G. ( 2002; ). DNA probes and primers in dental practice. Clin Infect Dis 35, S72–S77.[CrossRef]
    [Google Scholar]
  8. Cordwell, S. J. ( 2006; ). Technologies for bacterial surface proteomics. Curr Opin Microbiol 9, 320–329.[CrossRef]
    [Google Scholar]
  9. Diaz, P. I., Zilm, P. S. & Rogers, A. H. ( 2002; ). Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon dioxide-depleted environments. Microbiology 148, 467–472.
    [Google Scholar]
  10. Dzink, J. L., Sheenan, M. T. & Socransky, S. S. ( 1990; ). Proposal of three subspecies of Fusobacterium nucleatum Knorr 1922: Fusobacterium nucleatum subsp. nucleatum subsp. nov., comb. nov.; Fusobacterium nucleatum subsp. polymorphum subsp. nov., nom. rev., comb. nov.; and Fusobacterium nucleatum subsp. vincentii subsp. nov., nom. rev., comb. nov. Int J Syst Bacteriol 40, 74–78.[CrossRef]
    [Google Scholar]
  11. Eggert, F. M., Drewell, L., Bigelow, J. A., Speck, J. E. & Goldner, M. ( 1991; ). The pH of gingival crevices and periodontal pockets in children, teenagers and adults. Arch Oral Biol 36, 233–238.[CrossRef]
    [Google Scholar]
  12. Ellwood, D. C. & Hunter, J. R. ( 1976; ). The mouth as a chemostat. In Continuous Culture 6: Applications and New Fields, pp. 270–282. Edited by A. C. R. Dean, D. C. Ellwood, C. G. T. Ebvans & J. Melling. Chichester, UK: Ellis Horwood.
  13. Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. ( 1997; ). TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse Gram-negative bacteria. J Bacteriol 179, 5482–5493.
    [Google Scholar]
  14. Garcia-Vallve, S., Romeu, A. & Palau, J. ( 2000; ). Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10, 1719–1725.[CrossRef]
    [Google Scholar]
  15. Gardy, J. L., Laird, M. R., Chen, F., Rey, S., Walsh, C. J., Ester, M. & Brinkman, F. S. ( 2005; ). PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21, 617–623.[CrossRef]
    [Google Scholar]
  16. Gharbia, S. E. & Shah, H. N. ( 1992; ). Fusobacterium nucleatum subsp. fusiforme subsp. nov. and Fusobacterium nucleatum subsp. animalis subsp. nov. as additional subspecies within Fusobacterium nucleatum. Int J Syst Bacteriol 42, 296–298.[CrossRef]
    [Google Scholar]
  17. Gmur, R., Munson, M. A. & Wade, W. G. ( 2006; ). Genotypic and phenotypic characterization of fusobacteria from Chinese and European patients with inflammatory periodontal diseases. Syst Appl Microbiol 29, 120–130.[CrossRef]
    [Google Scholar]
  18. Goldstein, E. J., Summanen, P. H., Citron, D. M., Rosove, M. H. & Finegold, S. M. ( 1995; ). Fatal sepsis due to a beta-lactamase-producing strain of Fusobacterium nucleatum subspecies polymorphum. Clin Infect Dis 20, 797–800.[CrossRef]
    [Google Scholar]
  19. Hamilton, I. R., Phipps, P. J. & Ellwood, D. C. ( 1979; ). Effect of growth rate and glucose concentration on the biochemical properties of Streptococcus mutans Ingbritt in continuous culture. Infect Immun 26, 861–869.
    [Google Scholar]
  20. Hoskisson, P. A. & Hobbs, G. ( 2005; ). Continuous culture – making a comeback? Microbiology 151, 3153–3159.[CrossRef]
    [Google Scholar]
  21. Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J. & Mann, M. ( 2005; ). Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4, 1265–1272.[CrossRef]
    [Google Scholar]
  22. Kapatral, V., Anderson, I., Ivanova, N., Reznik, G., Los, T., Lykidis, A., Bhattacharyya, A., Bartman, A., Gardner, W. & other authors ( 2002; ). Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184, 2005–2018.[CrossRef]
    [Google Scholar]
  23. Kapatral, V., Ivanova, N., Anderson, I., Reznik, G., Bhattacharyya, A., Gardner, W. L., Mikhailova, N., Lapidus, A., Larsen, N. & other authors ( 2003; ). Genome analysis of F. nucleatum sub spp vincentii and its comparison with the genome of F. nucleatum ATCC 25586. Genome Res 13, 1180–1189.[CrossRef]
    [Google Scholar]
  24. Karpathy, S. E., Qin, X., Gioia, J., Jiang, H., Liu, Y., Petrosino, J. F., Yerrapragada, S., Fox, G. E., Haake, S. K. & other authors ( 2007; ). Genome sequence of Fusobacterium nucleatum subspecies polymorphum – a genetically tractable fusobacterium. PLoS One 2, e659 [CrossRef]
    [Google Scholar]
  25. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  26. Legault, B. A., Lopez-Lopez, A., Alba-Casado, J. C., Doolittle, W. F., Bolhuis, H., Rodriguez-Valera, F. & Papke, R. T. ( 2006; ). Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7, 171 [CrossRef]
    [Google Scholar]
  27. Marsh, P. D., McKee, A. S. & McDermid, A. S. ( 1993; ). Continuous culture studies. In Biology of the Species Porphyromonas gingivalis. Edited by N. H. Shah, D. Mayrand & R. J. Genco. Boca Raton, FL: CRC Press.
  28. Marsh, P. D., McDermid, A. S., McKee, A. S. & Baskerville, A. ( 1994; ). The effect of growth rate and haemin on the virulence and proteolytic activity of Porphyromonas gingivalis W50. Microbiology 140, 861–865.[CrossRef]
    [Google Scholar]
  29. Matsuzaki, M., Kiso, Y., Yamamoto, I. & Satoh, T. ( 2000; ). Gene disruption analysis of DppA isolated as a periplasmic molecular chaperone-like protein for folding of dimethyl sulfoxide reductase in Rhodobacter sphaeroides f. sp. denitrificans. FEMS Microbiol Lett 193, 223–229.[CrossRef]
    [Google Scholar]
  30. McDermid, A. S., McKee, A. S. & Marsh, P. D. ( 1988; ). Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56, 1096–1100.
    [Google Scholar]
  31. McKee, A. S., McDermid, A. S., Baskerville, A., Dowsett, A. B., Ellwood, D. C. & Marsh, P. D. ( 1986; ). Effect of hemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun 52, 349–355.
    [Google Scholar]
  32. Mira, A. ( 2008; ). Horizontal gene transfer in oral bacteria. In Molecular Oral Microbiology, chapter 3, pp. 65–85. Edited by A. H. Rogers. Norwich, UK: Horizon Scientific Press.
  33. Mira, A., Pushker, R., Legault, B. A., Moreira, D. & Rodriguez-Valera, F. ( 2004; ). Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics. BMC Evol Biol 4, 50 [CrossRef]
    [Google Scholar]
  34. Morris, M. L., Andrews, R. H. & Rogers, A. H. ( 1996; ). The use of allozyme electrophoresis to assess genetic heterogeneity among previously subspeciated isolates of Fusobacterium nucleatum. Oral Microbiol Immunol 11, 15–21.[CrossRef]
    [Google Scholar]
  35. Pushker, R., Mira, A. & Rodríguez-Valera, F. ( 2004; ). Comparative genomics of gene-family size in closely related bacteria. Genome Biol 5, R27 [CrossRef]
    [Google Scholar]
  36. Rogers, A. H., Zilm, P. S. & Gully, N. J. ( 1986; ). The utilisation of arginine by oral streptococci grown glucose-limited in a chemostat. FEMS Microbiol Lett 37, 9–13.[CrossRef]
    [Google Scholar]
  37. Rogers, A. H., Zilm, P. S., Gully, N. J., Pfennig, A. L. & Marsh, P. D. ( 1991; ). Aspects of the growth and metabolism of Fusobacterium nucleatum ATCC 10953 in continuous culture. Oral Microbiol Immunol 6, 250–255.[CrossRef]
    [Google Scholar]
  38. Rogers, A. H., Gully, N. J., Pfennig, A. L. & Zilm, P. S. ( 1992; ). The breakdown and utilization of peptides by strains of Fusobacterium nucleatum. Oral Microbiol Immunol 7, 299–303.[CrossRef]
    [Google Scholar]
  39. Rowley, G., Spector, M., Kormanec, J. & Roberts, M. ( 2006; ). Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4, 383–394.[CrossRef]
    [Google Scholar]
  40. Ruby, J. & Goldner, M. ( 2007; ). Nature of symbiosis in oral disease. J Dent Res 86, 8–11.[CrossRef]
    [Google Scholar]
  41. Sanchez-Perez, G., Mira, A., Nyiro, G., Pasic, L. & Rodriguez-Valera, F. ( 2008; ). Adapting to environmental changes using specialized paralogs. Trends Genet 24, 154–158.[CrossRef]
    [Google Scholar]
  42. Santoyo, G. & Romero, D. ( 2005; ). Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev 29, 169–183.
    [Google Scholar]
  43. Socransky, S. S. & Haffajee, A. D. ( 2005; ). Periodontal microbial ecology. Periodontol 2000 38, 135–187.[CrossRef]
    [Google Scholar]
  44. Socransky, S. S., Manganiello, A. D., Propas, D., Oram, V. & van Houte, J. ( 1977; ). Bacteriological studies of developing supragingival dental plaque. J Periodontal Res 12, 90–106.[CrossRef]
    [Google Scholar]
  45. Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L., Jr ( 1998; ). Microbial complexes in subgingival plaque. J Clin Periodontol 25, 134–144.[CrossRef]
    [Google Scholar]
  46. Sorek, R., Zhu, Y., Creevey, C. J., Francino, M. P., Bork, P. & Rubin, E. M. ( 2007; ). Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318, 1449–1452.[CrossRef]
    [Google Scholar]
  47. Takahashi, N. ( 2003; ). Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol 18, 109–113.[CrossRef]
    [Google Scholar]
  48. Takahashi, N. ( 2005; ). Microbial ecosystem in the oral cavity: metabolic diversity in an ecological niche and its relationship with oral diseases. Int Congr Ser 1284, 103–112.[CrossRef]
    [Google Scholar]
  49. Tempest, D. W. ( 1969; ). The continuous culture of micro-organisms. I. Theory of the chemostat. In Methods in Microbiology, vol. 2, pp. 260–276. Edited by J. R. Norris & D. W. Ribbons. Salisbury, UK: Microbiology Research Establishment.
  50. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  51. van der Hoeven, J. S., de Jong, M. H., Camp, P. J. M. & van den Kieboom, C. W. A. ( 1985; ). Competition between oral Streptococcus species in the chemostat under alternating conditions of glucose limitation and excess. FEMS Microbiol Ecol 31, 373–379.
    [Google Scholar]
  52. Vroom, J. M., De Grauw, K. J., Gerritsen, H. C., Bradshaw, D. J., Marsh, P. D., Watson, G. K., Birmingham, J. J. & Allison, C. ( 1999; ). Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl Environ Microbiol 65, 3502–3511.
    [Google Scholar]
  53. Zhang, Y., Wang, T., Chen, W., Yilmaz, O., Park, Y., Jung, I. Y., Hackett, M. & Lamont, R. J. ( 2005; ). Differential protein expression by Porphyromonas gingivalis in response to secreted epithelial cell components. Proteomics 5, 198–211.[CrossRef]
    [Google Scholar]
  54. Zilm, P. S. & Rogers, A. H. ( 2007; ). Co-adhesion and biofilm formation by Fusobacterium nucleatum in response to growth pH. Anaerobe 13, 146–152.[CrossRef]
    [Google Scholar]
  55. Zilm, P. S., Bagley, C. J., Rogers, A. H., Milne, I. R. & Gully, N. J. ( 2007; ). The proteomic profile of Fusobacterium nucleatum is regulated by growth pH. Microbiology 153, 148–159.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035881-0
Loading
/content/journal/micro/10.1099/mic.0.035881-0
Loading

Data & Media loading...

Supplements

[PDF](31 KB)

PDF

[PDF](77 KB)

PDF

Estimated ribosome-binding strength for the gene FN0689 (spot SSP 1001) and its two flanking genes (FN0688 and FN0690) along nucleotide position [PDF](26 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error