Fungal physiology – a future perspective Free

Abstract

The study of fungal physiology is set to change dramatically in the next few years as highly scalable technologies are deployed allowing accurate measurement and identification of metabolites, proteins and transcripts within cells. The advent of next-generation DNA-sequencing technologies will also provide genome sequence information from large numbers of industrially relevant and pathogenic fungal species, and allow comparative genome analysis between strains and populations of fungi. When coupled with advances in gene functional analysis, protein–protein interaction studies, live cell imaging and mathematical modelling, this promises a step-change in our understanding of how fungal cells operate as integrated dynamic living systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035436-0
2009-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3810.html?itemId=/content/journal/micro/10.1099/mic.0.035436-0&mimeType=html&fmt=ahah

References

  1. Bok J. W., Chiang Y.-M., Szewczyk E., Reyes-Domingez Y., Ashley D., Davidson A. D., Sanchez J. F., Lo H.-C., Watanabe K. other authors 2009; Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5:462–464
    [Google Scholar]
  2. Brown J. S., Holden D. W. 1998; Insertional mutagenesis of pathogenic fungi. Curr Opin Microbiol 1:390–394
    [Google Scholar]
  3. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P. 2002; Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459
    [Google Scholar]
  4. Corkus S. J., Feng S., Zhang X., Chen Z., Merriman B., Haudenschild C. D., Pradhan S., Nelson S. F., Pellegrini M., Jacobsen S. E. 2008; Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219
    [Google Scholar]
  5. Cornell M. J., Alam I., Soanes D. M., Wong H. M., Hedeler C., Paton N. W., Rattray M., Hubbard S. J., Talbot N. J., Oliver S. G. 2007; Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi. Genome Res 17:1809–1822
    [Google Scholar]
  6. Desjardins A. E. 2003; Gibberella from A (venaceae) to Z (eae. Annu Rev Phytopathol 41:177–198
    [Google Scholar]
  7. Einarson M. B. 2001; Detection of protein–protein interactions using the GST fusion protein pulldown technique. In Molecular Cloning: a Laboratory Manual , 3rd edn. pp. 18.55–18.59 Edited by Sambrook J., Russell D. W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  8. Fields S., Song O. 1989; A novel genetic system to detect protein–protein interactions. Nature 340:245–246
    [Google Scholar]
  9. Galán J. E., Wolf-Watz H. 2006; Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573
    [Google Scholar]
  10. Ghildiyal M., Zamore P. D. 2009; Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108
    [Google Scholar]
  11. Harris S. D., Turner G., Meyer V., Espeso E. A., Specht T., Takeshita N., Helmstedt K. 2009; Morphology and development in Aspergillus nidulans: a complex puzzle. Fungal Genet Biol 46:S82–S92
    [Google Scholar]
  12. Hedayati M. T., Pasqualotto A. C., Warn P. A., Bowyer P., Denning D. W. 2007; Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692
    [Google Scholar]
  13. Kershaw M. J., Talbot N. J. 2009; Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci U S A 106:15967–15972
    [Google Scholar]
  14. Li S., Armstrong C. M., Bertin N., Ge H., Milstein S., Boxem M., Vidalain P. O., Han J. D., Chesneau A. other authors 2004; A map of the interactome network of the metazoan C. elegans . Science 303:540–543
    [Google Scholar]
  15. Mitchell T. K., Dean R. A., Xu J.-R., Zhu H., Oh Y. Y., Rho H.-S. 2009; Protein chips and chromatin immunoprecipitation – emerging technologies to study macromolecule interactions in M. grisea . In Advances in Genetics, Genomics and Control of Rice Blast Disease pp 73–82 Edited by Wang G. L., Valent B. Dordrecht: Springer;
    [Google Scholar]
  16. Nguyen Q. B., Kadotani N., Kasahara S., Tosa Y., Mayama S., Nakayashiki H. 2008; Systematic analysis of calcium signalling proteins in the genome of the rice blast fungus Magnaporthe oryzae using a high-throughput RNA silencing system. Mol Microbiol 68:1348–1365
    [Google Scholar]
  17. Nicholson J. K., Lindon J. C. 2008; Metabonomics. Nature 455:1054–1056
    [Google Scholar]
  18. Parker D., Beckmann M., Zubair H., Enot D. P., Caracuel-Rios Z., Overy D. P., Snowdon S. J., Talbot N. J., Draper J. 2009; Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea . Plant J 59:723–737
    [Google Scholar]
  19. Rispail N., Soanes D. M., Ant C., Czajkowski R., Grünler A., Huguet R., Perez-Nadales E., Poli A., Sartorel E. other authors 2009; Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 46:287–298
    [Google Scholar]
  20. Soanes D. M., Richards T. A., Talbot N. J. 2007; Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity?. Plant Cell 19:3318–3326
    [Google Scholar]
  21. Staples R. C. 2000; Research on the rust fungi during the twentieth century. Annu Rev Phytopathol 38:49–69
    [Google Scholar]
  22. Tanzer M. M., Arst H. N., Skalchunes A. R., Coffin M., Darveaux B. A., Heiniger R. W., Shuster J. R. 2003; Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics 3:160–170
    [Google Scholar]
  23. Tucker S. L., Orbach M. J. 2007; Agrobacterium-mediated transformation to create an insertion library in Magnaporthe grisea . In Plant–Pathogen Interactions pp 57–68 Edited by Ronald P. C. Totowa, NJ: Humana Press;
    [Google Scholar]
  24. Villalba F., Collemare J., Landraud P., Lambou K., Brozek V., Cirer B., Morin D., Bruel C., Beffa R., Lebrun M.-H. 2008; Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45:68–75
    [Google Scholar]
  25. Whisson S. C., Boevink P. C., Moleleki L., Avrova A. O., Morales J. G., Gilroy E. M., Armstrong M. R., Grouffaud S., van West P. other authors 2007; A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–118
    [Google Scholar]
  26. Wilson R. A., Talbot N. J. 2009; Under pressure: investigating the biology of plant infection by Magnaporthe oryzae . Nat Rev Microbiol 7:185–195
    [Google Scholar]
  27. Wilson R. A., Jenkinson J. M., Wang Z.-Y., Gibson R. P., Littlechild J. A., Talbot N. J. 2007; Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685
    [Google Scholar]
  28. Win J., Kanneganti T. D., Torto-Alalibo T., Kamoun S. 2006; Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans . Fungal Genet Biol 43:20–33
    [Google Scholar]
  29. Yadav G., Gokhale R. S., Mohanty D. 2009; Towards prediction of metabolic products of polyketide synthases: an in silico analysis. PLOS Comput Biol 5:e1000351
    [Google Scholar]
  30. Yoshida K., Saitoh H., Fujisawa S., Kanzaki H., Matsumura H., Yoshida K., Tosa Y., Chuma I., Takano Y. other authors 2009; Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae . Plant Cell 21:1573–1591
    [Google Scholar]
  31. Yu H., Braun P., Yildirim M. A., Lemmens I., Venkatesan K., Sahalie J., Hirozane-Kishikawa T., Gebreab F., Li N. other authors 2008; High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110
    [Google Scholar]
  32. Zeigler R. S., Leong S. A., Teng P. S. 1994 Rice Blast Disease Wallingford, UK: CAB International;
    [Google Scholar]
  33. Zhu T., Wang W., Yang X., Wang K., Cui Z. 2009; Construction of two Gateway vectors for gene expression in fungi. Plasmid 62:128–133
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035436-0
Loading

Most cited Most Cited RSS feed