1887

Abstract

We have studied the mechanism by which -lactam challenge leads to -lactamase induction in through transposon-insertion mutagenesis. Disruption of the -carboxypeptidases/endopeptidases, penicillin-binding protein 4 or BlrY leads to elevated monomer-disaccharide-pentapeptide levels in peptidoglycan and concomitant overproduction of -lactamase through activation of the BlrAB two-component regulatory system. During -lactam challenge, monomer-disaccharide-pentapeptide levels increase proportionately with -lactamase production and -lactamase induction is inhibited by vancomycin, which binds muro-pentapeptides. Taken together, these data strongly suggest that the spp. -lactamase regulatory sensor kinase, BlrB, responds to the concentration of monomer-disaccharide-pentapeptide in peptidoglycan.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035220-0
2010-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2327.html?itemId=/content/journal/micro/10.1099/mic.0.035220-0&mimeType=html&fmt=ahah

References

  1. Alksne, L. E. & Rasmussen, B. A. ( 1997; ). Expression of AsbA1, OXA-12 and AsbM1 β-lactamases in Aeromonas jandaei AER14 is coordinated by a two-component regulon. J Bacteriol 179, 2006–2013.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Andrews, J.M. ( 2001; ). Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48, (Suppl. S1), 5–16.[CrossRef]
    [Google Scholar]
  4. Avison, M. B., Niumsup, P., Walsh, T. R. & Bennett, P. M. ( 2000a; ). The Aeromonas hydrophila AmpH and CepH β-lactamases: increased expression in mutants of Escherichia coli lacking creB. J Antimicrob Chemother 46, 695–702.[CrossRef]
    [Google Scholar]
  5. Avison, M. B., von Heldreich, C. J., Higgins, C. S., Bennett, P. M. & Walsh, T. R. ( 2000b; ). A TEM β-lactamase encoded on an active Tn1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia. J Antimicrob Chemother 46, 879–884.[CrossRef]
    [Google Scholar]
  6. Avison, M. B., Horton, R. E., Walsh, T. R. & Bennett, P. M. ( 2001; ). Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 276, 26955–26961.[CrossRef]
    [Google Scholar]
  7. Avison, M. B., Higgins, C. S., Ford, P. J., von Heldreich, C. J., Walsh, T. R. & Bennett, P. M. ( 2002; ). Differential regulation of L1 and L2 β-lactamase expression in Stenotrophomonas maltophilia. J Antimicrob Chemother 49, 387–389.[CrossRef]
    [Google Scholar]
  8. Avison, M. B., Niumsup, P., Nurmahomed, K., Walsh, T. R. & Bennett, P. M. ( 2004; ). Role of the ‘cre/blr-tag’ DNA sequence in regulation of gene expression by the Aeromonas hydrophila β-lactamase regulator, BlrA. J Antimicrob Chemother 53, 197–202.[CrossRef]
    [Google Scholar]
  9. Ayala, J., Quesada, A., Vadillo, S., Criado, J. & Piriz, S. ( 2005; ). Penicillin-binding proteins of Bacteroides fragilis and their role in the resistance to imipenem of clinical isolates. J Med Microbiol 54, 1055–1064.[CrossRef]
    [Google Scholar]
  10. Cheng, Q. & Park, J. T. ( 2002; ). Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J Bacteriol 184, 6434–6436.[CrossRef]
    [Google Scholar]
  11. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative Eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  12. Dietz, H., Pfeifle, D. & Wiedemann, B. ( 1997; ). The signal molecule for β-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide. Antimicrob Agents Chemother 41, 2113–2120.
    [Google Scholar]
  13. Glauner, B. ( 1988; ). Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem 172, 451–464.[CrossRef]
    [Google Scholar]
  14. Gregory, P. D., Lewis, R. A., Curnock, S. P. & Dyke, K. G. ( 1997; ). Studies on the repressor (BlaI) of β-lactamase synthesis in Staphylococcus aureus. Mol Microbiol 24, 1025–1037.[CrossRef]
    [Google Scholar]
  15. Hanson, N. D. & Sanders, C. C. ( 1999; ). Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5, 881–894.
    [Google Scholar]
  16. Jacobs, C., Joris, B., Jamin, M., Klarsov, K., VanBeeumen, J., Mengin-Lecreulx, D., van Heijenoort, J., Park, J. T., Normark, S. & Frere, J. M. ( 1995; ). AmpD, essential for both β-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-l-alanine amidase. Mol Microbiol 15, 553–559.[CrossRef]
    [Google Scholar]
  17. Jacobs, C., Frere, J. M. & Normark, S. ( 1997; ). Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in Gram-negative bacteria. Cell 88, 823–832.[CrossRef]
    [Google Scholar]
  18. Kong, K. F., Jayawardena, S. R., Indulkar, S. D., Del Puerto, A., Koh, C. L., Høiby, N. & Mathee, K. ( 2005; ). Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother 49, 4567–4575.[CrossRef]
    [Google Scholar]
  19. Küpfer, M., Kuhnert, P., Korczak, B. M., Peduzzi, R. & Demarta, A. ( 2006; ). Genetic relationships of Aeromonas strains inferred from 16S rRNA, gyrB and rpoB gene sequences. Int J Syst Evol Microbiol 56, 2743–2751.[CrossRef]
    [Google Scholar]
  20. Lodge, J., Busby, S. & Piddock, L. ( 1993; ). Investigation of the Pseudomonas aeruginosa ampR gene and its role in the chromosomal ampC β-lactamase promoter. FEMS Microbiol Lett 111, 315–320.
    [Google Scholar]
  21. Martinez, E., Bartolome, B. & de la Cruz, F. ( 1988; ). pACYC184-derived cloning vectors containing the multiple cloning site and lacZ-alpha reporter gene of pUC8/9 and pUC18/19. Gene 68, 159–162.[CrossRef]
    [Google Scholar]
  22. Moya, B., Dötsch, A., Juan, C., Blázquez, J., Zamorano, L., Haussler, S. & Oliver, A. ( 2009; ). β-Lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog 5, e1000353 [CrossRef]
    [Google Scholar]
  23. Niumsup, P., Simm, A. M., Nurmahomed, K., Walsh, T. R., Bennett, P. M. & Avison, M. B. ( 2003; ). Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of β-lactamase expression in Aeromonas spp. J Antimicrob Chemother 51, 1351–1358.[CrossRef]
    [Google Scholar]
  24. Novick, R. P. ( 1965; ). The genetic determinant of staphylococcal penicillinase. Ann N Y Acad Sci 128, 165–182.
    [Google Scholar]
  25. Okazaki, A. & Avison, M. B. ( 2008; ). Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother 52, 1525–1528.[CrossRef]
    [Google Scholar]
  26. Ottolenghi, A. C. & Ayala, J. A. ( 1991; ). Induction of class I β-lactamase from Citrobacter freundii in Escherichia coli requires active ftsZ but not ftsA or ftsQ products. Antimicrob Agents Chemother 35, 2359–2365.[CrossRef]
    [Google Scholar]
  27. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Strategies for cloning in plasmid vectors. In Molecular Cloning, a Laboratory Manual, vol. 1, 2nd edn, pp. 53–104. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Sanders, C. C., Bradford, P. A., Ehrhardt, A. F., Bush, K., Young, K. D., Henderson, T. A. & Sanders, W. E. ( 1997; ). Penicillin-binding proteins and induction of AmpC β-lactamase. Antimicrob Agents Chemother 41, 2013–2015.
    [Google Scholar]
  29. Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. ( 2008; ). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32, 234–258.[CrossRef]
    [Google Scholar]
  30. Seshadri, R., Joseph, S. W., Chopra, A. K., Sha, J., Shaw, J., Graf, J., Haft, D., Wu, M., Ren, Q. & other authors ( 2006; ). Genome sequence of Aeromonas hydrophila ATCC 7966T: the Jack of all trades. J Bacteriol 188, 8272–8282.[CrossRef]
    [Google Scholar]
  31. Simon, R., Priefer, U. B. & Puhler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  32. Trepanier, S., Prince, A. & Huletsky, A. ( 1997; ). Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator. Antimicrob Agents Chemother 41, 2399–2405.
    [Google Scholar]
  33. Tuomanen, E., Lindquist, S., Sande, S., Galleni, M., Light, K., Gage, D. & Normark, S. ( 1991; ). Coordinate regulation of β-lactamase induction and peptidoglycan composition by the amp operon. Science 251, 201–204.[CrossRef]
    [Google Scholar]
  34. Ursinus, A., van den Ent, F., Brechtel, S., de Pedro, M. A., Höltje, J.-V. & Vollmer, W. ( 2004; ). Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J Bacteriol 186, 6728–6737.[CrossRef]
    [Google Scholar]
  35. Vötsch, W. & Templin, M. F. ( 2000; ). Characterization of a β-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. J Biol Chem 275, 39032–39038.[CrossRef]
    [Google Scholar]
  36. Walsh, T. R., Payne, D. J., MacGowan, A. P. & Bennett, P. M. ( 1995; ). A clinical isolate of Aeromonas sobria with three chromosomally mediated inducible β-lactamases: a cephalosporinase, a penicillinase and a third enzyme, displaying carbapenemase activity. J Antimicrob Chemother 35, 271–279.[CrossRef]
    [Google Scholar]
  37. Walsh, T. R., Stunt, R. A., Nabi, J. A., MacGowan, A. P. & Bennett, P. M. ( 1997; ). Distribution and expression of β-lactamase genes among Aeromonas spp. J Antimicrob Chemother 40, 171–178.[CrossRef]
    [Google Scholar]
  38. Watanakunakorn, C. ( 1984; ). Mode of action and in-vitro activity of vancomycin. J Antimicrob Chemother 14, (Suppl. D), 7–18.
    [Google Scholar]
  39. West, A. H. & Stock, A. M. ( 2001; ). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26, 369–376.[CrossRef]
    [Google Scholar]
  40. Wilke, M. S., Hills, T. L., Zhang, H. Z., Chambers, H. F. & Strynadka, N. C. ( 2004; ). Crystal structures of the Apo and penicillin-acylated forms of the BlaR1 β-lactam sensor of Staphylococcus aureus. J Biol Chem 279, 47278–47287.[CrossRef]
    [Google Scholar]
  41. Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. ( 2001; ). A proteolytic transmembrane signalling pathway and resistance to β-lactams in Staphylococci. Science 291, 1962–1965.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035220-0
Loading
/content/journal/micro/10.1099/mic.0.035220-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error