1887

Abstract

We have studied the mechanism by which -lactam challenge leads to -lactamase induction in through transposon-insertion mutagenesis. Disruption of the -carboxypeptidases/endopeptidases, penicillin-binding protein 4 or BlrY leads to elevated monomer-disaccharide-pentapeptide levels in peptidoglycan and concomitant overproduction of -lactamase through activation of the BlrAB two-component regulatory system. During -lactam challenge, monomer-disaccharide-pentapeptide levels increase proportionately with -lactamase production and -lactamase induction is inhibited by vancomycin, which binds muro-pentapeptides. Taken together, these data strongly suggest that the spp. -lactamase regulatory sensor kinase, BlrB, responds to the concentration of monomer-disaccharide-pentapeptide in peptidoglycan.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035220-0
2010-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2327.html?itemId=/content/journal/micro/10.1099/mic.0.035220-0&mimeType=html&fmt=ahah

References

  1. Alksne L. E., Rasmussen B. A. 1997; Expression of AsbA1, OXA-12 and AsbM1 β-lactamases in Aeromonas jandaei AER14 is coordinated by a two-component regulon. J Bacteriol 179:2006–2013
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Meyers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Andrews J.M. 2001; Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48, (Suppl. S1):5–16
    [Google Scholar]
  4. Avison M. B., Niumsup P., Walsh T. R., Bennett P. M. 2000a; The Aeromonas hydrophila AmpH and CepH β-lactamases: increased expression in mutants of Escherichia coli lacking creB. J Antimicrob Chemother 46:695–702
    [Google Scholar]
  5. Avison M. B., von Heldreich C. J., Higgins C. S., Bennett P. M., Walsh T. R. 2000b; A TEM β-lactamase encoded on an active Tn 1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia. J Antimicrob Chemother 46:879–884
    [Google Scholar]
  6. Avison M. B., Horton R. E., Walsh T. R., Bennett P. M. 2001; Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 276:26955–26961
    [Google Scholar]
  7. Avison M. B., Higgins C. S., Ford P. J., von Heldreich C. J., Walsh T. R., Bennett P. M. 2002; Differential regulation of L1 and L2 β-lactamase expression in Stenotrophomonas maltophilia. J Antimicrob Chemother 49:387–389
    [Google Scholar]
  8. Avison M. B., Niumsup P., Nurmahomed K., Walsh T. R., Bennett P. M. 2004; Role of the ‘ cre/ blr-tag’ DNA sequence in regulation of gene expression by the Aeromonas hydrophila β-lactamase regulator, BlrA. J Antimicrob Chemother 53:197–202
    [Google Scholar]
  9. Ayala J., Quesada A., Vadillo S., Criado J., Piriz S. 2005; Penicillin-binding proteins of Bacteroides fragilis and their role in the resistance to imipenem of clinical isolates. J Med Microbiol 54:1055–1064
    [Google Scholar]
  10. Cheng Q., Park J. T. 2002; Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J Bacteriol 184:6434–6436
    [Google Scholar]
  11. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative Eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  12. Dietz H., Pfeifle D., Wiedemann B. 1997; The signal molecule for β-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide. Antimicrob Agents Chemother 41:2113–2120
    [Google Scholar]
  13. Glauner B. 1988; Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem 172:451–464
    [Google Scholar]
  14. Gregory P. D., Lewis R. A., Curnock S. P., Dyke K. G. 1997; Studies on the repressor (BlaI) of β-lactamase synthesis in Staphylococcus aureus. Mol Microbiol 24:1025–1037
    [Google Scholar]
  15. Hanson N. D., Sanders C. C. 1999; Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5:881–894
    [Google Scholar]
  16. Jacobs C., Joris B., Jamin M., Klarsov K., VanBeeumen J., Mengin-Lecreulx D., van Heijenoort J., Park J. T., Normark S., Frere J. M. 1995; AmpD, essential for both β-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-l-alanine amidase. Mol Microbiol 15:553–559
    [Google Scholar]
  17. Jacobs C., Frere J. M., Normark S. 1997; Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in Gram-negative bacteria. Cell 88:823–832
    [Google Scholar]
  18. Kong K. F., Jayawardena S. R., Indulkar S. D., Del Puerto A., Koh C. L., Høiby N., Mathee K. 2005; Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother 49:4567–4575
    [Google Scholar]
  19. Küpfer M., Kuhnert P., Korczak B. M., Peduzzi R., Demarta A. 2006; Genetic relationships of Aeromonas strains inferred from 16S rRNA, gyrB and rpoB gene sequences. Int J Syst Evol Microbiol 56:2743–2751
    [Google Scholar]
  20. Lodge J., Busby S., Piddock L. 1993; Investigation of the Pseudomonas aeruginosa ampR gene and its role in the chromosomal ampC β-lactamase promoter. FEMS Microbiol Lett 111:315–320
    [Google Scholar]
  21. Martinez E., Bartolome B., de la Cruz F. 1988; pACYC184-derived cloning vectors containing the multiple cloning site and lacZ-alpha reporter gene of pUC8/9 and pUC18/19. Gene 68:159–162
    [Google Scholar]
  22. Moya B., Dötsch A., Juan C., Blázquez J., Zamorano L., Haussler S., Oliver A. 2009; β-Lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog 5:e1000353
    [Google Scholar]
  23. Niumsup P., Simm A. M., Nurmahomed K., Walsh T. R., Bennett P. M., Avison M. B. 2003; Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of β-lactamase expression in Aeromonas spp. J Antimicrob Chemother 51:1351–1358
    [Google Scholar]
  24. Novick R. P. 1965; The genetic determinant of staphylococcal penicillinase. Ann N Y Acad Sci 128:165–182
    [Google Scholar]
  25. Okazaki A., Avison M. B. 2008; Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother 52:1525–1528
    [Google Scholar]
  26. Ottolenghi A. C., Ayala J. A. 1991; Induction of class I β-lactamase from Citrobacter freundii in Escherichia coli requires active ftsZ but not ftsA or ftsQ products. Antimicrob Agents Chemother 35:2359–2365
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989; Strategies for cloning in plasmid vectors. In Molecular Cloning, a Laboratory Manual vol 1, 2nd edn. pp 53–104 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Sanders C. C., Bradford P. A., Ehrhardt A. F., Bush K., Young K. D., Henderson T. A., Sanders W. E. 1997; Penicillin-binding proteins and induction of AmpC β-lactamase. Antimicrob Agents Chemother 41, 2013–2015
  29. Sauvage E., Kerff F., Terrak M., Ayala J. A., Charlier P. 2008; The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258
    [Google Scholar]
  30. Seshadri R., Joseph S. W., Chopra A. K., Sha J., Shaw J., Graf J., Haft D., Wu M., Ren Q. other authors 2006; Genome sequence of Aeromonas hydrophila ATCC 7966T: the Jack of all trades. J Bacteriol 188:8272–8282
    [Google Scholar]
  31. Simon R., Priefer U. B., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  32. Trepanier S., Prince A., Huletsky A. 1997; Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator. Antimicrob Agents Chemother 41:2399–2405
    [Google Scholar]
  33. Tuomanen E., Lindquist S., Sande S., Galleni M., Light K., Gage D., Normark S. 1991; Coordinate regulation of β-lactamase induction and peptidoglycan composition by the amp operon. Science 251:201–204
    [Google Scholar]
  34. Ursinus A., van den Ent F., Brechtel S., de Pedro M. A., Höltje J.-V., Vollmer W. 2004; Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J Bacteriol 186:6728–6737
    [Google Scholar]
  35. Vötsch W., Templin M. F. 2000; Characterization of a β- N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. J Biol Chem 275:39032–39038
    [Google Scholar]
  36. Walsh T. R., Payne D. J., MacGowan A. P., Bennett P. M. 1995; A clinical isolate of Aeromonas sobria with three chromosomally mediated inducible β-lactamases: a cephalosporinase, a penicillinase and a third enzyme, displaying carbapenemase activity. J Antimicrob Chemother 35:271–279
    [Google Scholar]
  37. Walsh T. R., Stunt R. A., Nabi J. A., MacGowan A. P., Bennett P. M. 1997; Distribution and expression of β-lactamase genes among Aeromonas spp. J Antimicrob Chemother 40:171–178
    [Google Scholar]
  38. Watanakunakorn C. 1984; Mode of action and in-vitro activity of vancomycin. J Antimicrob Chemother 14, (Suppl. D):7–18
    [Google Scholar]
  39. West A. H., Stock A. M. 2001; Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376
    [Google Scholar]
  40. Wilke M. S., Hills T. L., Zhang H. Z., Chambers H. F., Strynadka N. C. 2004; Crystal structures of the Apo and penicillin-acylated forms of the BlaR1 β-lactam sensor of Staphylococcus aureus. J Biol Chem 279:47278–47287
    [Google Scholar]
  41. Zhang H. Z., Hackbarth C. J., Chansky K. M., Chambers H. F. 2001; A proteolytic transmembrane signalling pathway and resistance to β-lactams in Staphylococci. Science 291:1962–1965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035220-0
Loading
/content/journal/micro/10.1099/mic.0.035220-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error