1887

Abstract

The complex (Bcc) emerged as problematic opportunistic pathogens to cystic fibrosis (CF) patients. Although several virulence factors have been identified in Bcc, the knowledge of their relative contribution to Bcc pathogenicity remains scarce. In this work, we describe the identification and characterization of a IST408 mutant containing a disruption in the gene. In other bacteria, Hfq is a global regulator of metabolism, acting as an RNA chaperone involved in the riboregulation of target mRNAs by small regulatory non-coding RNAs (sRNAs). The Hfq protein was overproduced as a histidine-tagged derivative, and we show evidence that the protein forms hexamers and binds sRNAs. When provided , the IST408 gene complemented the mutant strain GS081. Our results also show that the mutant is more susceptible to stress conditions mimicking those faced by Bcc bacteria when infecting the CF host. In addition, the mutant and two mutants derived from and clinical isolates also exhibited a reduced ability to colonize and kill the nematode , used as an infection model. These data, together with the conservation of Hfq orthologues among Bcc, strongly suggest that Hfq plays a major role in the survival of Bcc under stress conditions, contributing to the success of Bcc as CF pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035139-0
2010-03-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/896.html?itemId=/content/journal/micro/10.1099/mic.0.035139-0&mimeType=html&fmt=ahah

References

  1. Ali Azam T., Iwata A., Nishimura A., Ueda S., Ishihama A.. 1999; Growth-phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol181:6361–6370
    [Google Scholar]
  2. Bernier S. P., Sokol P. A.. 2005; Use of suppression-subtractive hybridization to identify genes in the Burkholderia cepacia complex that are unique to Burkholderia cenocepacia. J Bacteriol187:5278–5291
    [Google Scholar]
  3. Bradford M. M.. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  4. Brennan R. G., Link T. M.. 2007; Hfq structure, function and ligand binding. Curr Opin Microbiol10:125–133
    [Google Scholar]
  5. Brenner S.. 1974; The genetics of Caenorhabditis elegans. Genetics77:71–94
    [Google Scholar]
  6. Cardona S. T., Wopperer J., Eberl L., Valvano M. A.. 2005; Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model. FEMS Microbiol Lett250:97–104
    [Google Scholar]
  7. Casadaban M. J.. 1976; Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol104:541–555
    [Google Scholar]
  8. Coenye T., Vandamme P., LiPuma J. J., Govan J. R., Mahenthiralingam E.. 2003; Updated version of the Burkholderia cepacia complex experimental strain panel. J Clin Microbiol41:2797–2798
    [Google Scholar]
  9. Coenye T., Drevinek P., Mahenthiralingam E., Shah S. A., Gill R. T., Vandamme P., Ussery D. W.. 2007; Identification of putative noncoding RNA genes in the Burkholderia cenocepacia J2315 genome. FEMS Microbiol Lett276:83–92
    [Google Scholar]
  10. Cunha M. V., Pinto-de-Oliveira A., Meirinhos-Soares L., Salgado M. J., Melo-Cristino J., Correia S., Barreto C., Sá-Correia I.. 2007; Exceptionally high representation of Burkholderia cepacia among B. cepacia complex isolates recovered from the major Portuguese cystic fibrosis center. J Clin Microbiol45:1628–1633
    [Google Scholar]
  11. Dennis J. J., Zylstra G. J.. 1998; Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol64:2710–2715
    [Google Scholar]
  12. Ding Y., Davis B. M., Waldor M. K.. 2004; Hfq is essential for Vibrio cholerae virulence and downregulates σ expression. Mol Microbiol53:345–354
    [Google Scholar]
  13. Dutta D., Bandyopadhyay K., Datta A. B., Sardesai A. A., Parrack P.. 2009; Properties of HflX, an enigmatic protein from Escherichia coli. J Bacteriol191:2307–2314
    [Google Scholar]
  14. Fantappiè L., Metruccio M. M., Seib K. L., Oriente F., Cartocci E., Ferlicca F., Giuliani M. M. M., Scarlato V., Delany I.. 2009; The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect Immun77:1842–1853
    [Google Scholar]
  15. Ferreira A. S., Leitão J. H., Sousa S. A., Cosme A. M., Sá-Correia I., Moreira L. M.. 2007; Functional analysis of Burkholderia cepacia genes bceD and bceF, encoding a phosphotyrosine phosphatase and a tyrosine autokinase, respectively: role in exopolysaccharide biosynthesis and biofilm formation. Appl Environ Microbiol73:524–534
    [Google Scholar]
  16. Figurski D. H., Helinski D. R.. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A76:1648–1652
    [Google Scholar]
  17. Franze de Fernandez M. T., Eoyang L., August J. T.. 1968; Factor fraction required for the synthesis of bacteriophage Q β-RNA. Nature219:588–590
    [Google Scholar]
  18. Gottesman S.. 2005; Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet21:399–404
    [Google Scholar]
  19. Huber B., Feldmann F., Köthe M., Vandamme P., Wopperer J., Riedel K., Eberl L.. 2004; Identification of a novel virulence factor in Burkholderia cenocepacia required for efficient slow killing of Caenorhabditis elegans. Infect Immun72:7220–7230
    [Google Scholar]
  20. Hübner P., Willison J. C., Vignais P. M., Bickle T. A.. 1991; Expression of regulatory nif genes in Rhodobacter capsulatus. J Bacteriol173:2993–2999
    [Google Scholar]
  21. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H.. 1984; Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr104:206–210
    [Google Scholar]
  22. Jackson V.. 1999; Formaldehyde cross-linking for studying nucleosomal dynamics. Methods17:125–139
    [Google Scholar]
  23. Lefebre M. D., Valvano M. A.. 2002; Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in Burkholderia cepacia complex isolates. Appl Environ Microbiol68:5956–5964
    [Google Scholar]
  24. Loutet S. A., Bartholdson S. J., Govan J. R., Campopiano D. J., Valvano M. A.. 2009; Contributions of two UDP-glucose dehydrogenases to viability and polymyxin B resistance of Burkholderia cenocepacia. Microbiology155:2029–2039
    [Google Scholar]
  25. Lyczak J. B., Cannon L. C., Pier G. P.. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev15:194–222
    [Google Scholar]
  26. Mahajan-Miklos S., Tan M. W., Rahme L. G., Ausubel F. M.. 1999; Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell96:47–56
    [Google Scholar]
  27. Mahenthiralingam E., Urban T. A., Goldberg J. B.. 2005; The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol3:144–156
    [Google Scholar]
  28. Mahenthiralingam E., Baldwin A., Dowson C. G.. 2008; Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol104:1539–1551
    [Google Scholar]
  29. Markowitz V. M., Szeto E., Palaniappan K., Grechkin Y., Chu K., Chen I. A., Dubchak I., Anderson I., Lykidis A.. other authors 2008; The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res36:D528–D533
    [Google Scholar]
  30. McClean S., Callaghan M.. 2009; Burkholderia cepacia complex: epithelial cell-pathogen confrontations and potential for therapeutic intervention. J Med Microbiol58:1–12
    [Google Scholar]
  31. McNealy T. L., Forsbach-Birk V., Shi C., Marre R.. 2005; The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and interacts with the global regulator CsrA. J Bacteriol187:1527–1532
    [Google Scholar]
  32. Moreira L. M., Videira P. A., Sousa S. A., Leitão J. H., Cunha M. V., Sá-Correia I.. 2003; Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun312:323–333
    [Google Scholar]
  33. Moy T. I., Ball A. R., Anklesaria Z., Casadei G., Lewis K., Ausubel F. M.. 2006; Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci U S A103:10414–10419
    [Google Scholar]
  34. Muffler A., Traulsen D. D., Fischer D., Lange R., Hengge-Aronis R.. 1997; The RNA-binding protein HF-I plays a global regulatory role, which is largely, but not exclusively, due to its role in expression of the sigma S subunit of RNA polymerase in Escherichia coli. J Bacteriol179:297–300
    [Google Scholar]
  35. Nakao H., Watanabe H., Nakayama S., Takeda T.. 1995; yst gene expression in Yersinia enterolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene ( hfq. Mol Microbiol18:859–865
    [Google Scholar]
  36. Pannone B. K., Wolin S. L.. 2000; RNA degradation: Sm-like proteins wRING the neck of mRNA. Curr Biol10:R478–R481
    [Google Scholar]
  37. Richau J. A., Leitão J. H., Correia M., Lito L., Salgado M. J., Barreto C., Cescutti P., Sá-Correia I.. 2000; Molecular typing and exopolysaccharide biosynthesis of Burkholderia cepacia isolates from a Portuguese cystic fibrosis center. J Clin Microbiol38:1651–1655
    [Google Scholar]
  38. Roberts T. M., Ward S.. 1982; Membrane flow during nematode spermiogenesis. J Cell Biol92:113–120
    [Google Scholar]
  39. Robertson G. T., Roop R. M. Jr. 1999; The Brucella abortus host factor 1 (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol34:690–700
    [Google Scholar]
  40. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sauter C., Basquin J., Suck D.. 2003; Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res31:4091–4098
    [Google Scholar]
  42. Sittka A., Pfeiffer V., Tedin K., Vogel J.. 2007; The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol63:193–217
    [Google Scholar]
  43. Sokol P. A., Darling P., Woods D. E., Mahenthiralingam E., Kooi C.. 1999; Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding l-ornithine N5-oxygenase. Infect Immun67:4443–4455
    [Google Scholar]
  44. Sonnleitner E., Hagens S., Rosenau F., Wilhelm S., Habel A., Jager K. E., Blasi U.. 2003; Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog35:217–228
    [Google Scholar]
  45. Sousa S. A., Moreira L. M., Wopperer J., Eberl L., Sá-Correia I., Leitão J. H.. 2007; The Burkholderia cepacia bceA gene encodes a protein with phosphomannose isomerase and GDP-d-mannose pyrophosphorylase activities. Biochem Biophys Res Commun353:200–206
    [Google Scholar]
  46. Sousa S. A., Ramos C. G., Almeida F., Meirinhos-Soares L., Wopperer J., Schwager S., Eberl L., Leitão J. H.. 2008; Burkholderia cenocepacia J2315 acyl carrier protein: a potential target for antimicrobials' development?. Microb Pathog45:331–336
    [Google Scholar]
  47. Tomar S. K., Dhimole N., Chatterjee M., Prakash B.. 2009; Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Nucleic Acids Res37:2359–2370
    [Google Scholar]
  48. Tomich M., Herfst C. A., Golden J. W., Mohr C. D.. 2002; Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun70:1799–1806
    [Google Scholar]
  49. Tsui H.-C. T., Leung H.-C. E., Winkler M. E.. 1994; Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol13:35–49
    [Google Scholar]
  50. Valentin-Hansen P., Eriksen M., Udesen C.. 2004; The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol51:1525–1533
    [Google Scholar]
  51. Vanlaere E., Lipuma J. J., Baldwin A., Henry D., De Brandt E., Mahenthiralingam E., Speert D. P., Dowson C., Vandamme P.. 2008; Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov.,novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol58:1580–1590
    [Google Scholar]
  52. Vanlaere E., Baldwin A., Gevers D., Henry D., De Brandt E., LiPuma J. J., Mahenthiralingam E., Speert D. P., Dowson C., Vandamme P.. 2009; Taxon K, a complex within the Burkholderia cepacia complex comprises at least two novel species: Burkholderia contaminans sp.nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol59:102–111
    [Google Scholar]
  53. Videira P. A., Garcia A. P., Sá-Correia I.. 2005; Functional and topological analysis of the Burkholderia cenocepacia priming glucosyltransferase BceB, involved in the biosynthesis of the cepacian exopolysaccharide. J Bacteriol187:5013–5018
    [Google Scholar]
  54. Zhang A., Wassarman K. M., Ortega J., Steven A. C., Storz G.. 2002; The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell9:11–22
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035139-0
Loading
/content/journal/micro/10.1099/mic.0.035139-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error