RpoE2 of is necessary for trehalose synthesis and growth in hyperosmotic media Free

Abstract

Adaptation to osmotic stress can be achieved by the accumulation of compatible solutes that aid in turgor maintenance and macromolecule stabilization. The genetic regulation of solute accumulation is poorly understood, and has been described well at the molecular level only in enterobacteria. In this study, we show the importance of the alternative sigma factor RpoE2 in osmoadaptation. Construction and characterization of an mutant revealed compromised growth in hyperosmotic media. This defect was due to the lack of trehalose, a minor carbohydrate osmolyte normally produced in the initial stages of growth and in stationary phase. We demonstrate here that all three trehalose synthesis pathways are RpoE2 dependent, but only the OtsA pathway is important for osmoinducible trehalose synthesis. Furthermore, we confirm that the absence of RpoE2-dependent induction of is the cause of the osmotic phenotype of the mutant. In conclusion, we have highlighted that, despite its low level, trehalose is a crucial compatible solute in , and the OtsA pathway induced by RpoE2 is needed for its accumulation under hyperosmotic conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034850-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1708.html?itemId=/content/journal/micro/10.1099/mic.0.034850-0&mimeType=html&fmt=ahah

References

  1. Bardonnet N., Blanco C. 1992; ′uidA-antibiotic-resistance cassettes for insertion mutagenesis, gene fusions and genetic constructions. FEMS Microbiol Lett 72:243–248
    [Google Scholar]
  2. Barra L., Fontenelle C., Ermel G., Trautwetter A., Walker G. C., Blanco C. 2006; Interrelations between glycine betaine catabolism and methionine biosynthesis in Sinorhizobium meliloti strain 102F34. J Bacteriol 188:7195–7204
    [Google Scholar]
  3. Becker A., Schmidt M., Jager W., Puhler A. 1995; New gentamicin-resistance and lacZ promoter–probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene 162:37–39
    [Google Scholar]
  4. Bourot S., Sire O., Trautwetter A., Touzé T., Wu L. W., Blanco C., Bernard T. 2000; Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J Biol Chem 275:1050–1056
    [Google Scholar]
  5. Cardoso F. S., Castro R. F., Borges N., Santos H. 2007; Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 153:270–280
    [Google Scholar]
  6. Carpinelli J., Kramer R., Agosin E. 2006; Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72:1949–1955
    [Google Scholar]
  7. Cowie A., Cheng J., Sibley C. D., Fong Y., Zaheer R., Patten C. L., Morton R. M., Golding G. B., Finan T. M. 2006; An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti. Appl Environ Microbiol 72:7156–7167
    [Google Scholar]
  8. Crowe J. H. 2007; Trehalose as a ‘chemical chaperone’: fact and fantasy. Adv Exp Med Biol 594:143–158
    [Google Scholar]
  9. da Costa M. S., Santos H., Galinski E. A. 1998; An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153
    [Google Scholar]
  10. Dennis J. J., Zylstra G. J. 1998; Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715
    [Google Scholar]
  11. De Smet K. A., Weston A., Brown I. N., Young D. B., Robertson B. D. 2000; Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208
    [Google Scholar]
  12. Diamant S., Eliahu N., Rosenthal D., Goloubinoff P. 2001; Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591
    [Google Scholar]
  13. Domínguez-Ferreras A., Pérez-Arnedo R., Becker A., Olivares J., Soto M. J., Sanjuán J. 2006; Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188:7617–7625
    [Google Scholar]
  14. Domínguez-Ferreras A., Soto M. J., Pérez-Arnedo R., Olivares J., Sanjuán J. 2009; Importance of trehalose biosynthesis for Sinorhizobium meliloti osmotolerance and nodulation of alfalfa roots. J Bacteriol 191:7490–7499
    [Google Scholar]
  15. Encarnación S., del Carmen Vargas M., Dunn M. F., Dávalos A., Mendoza G., Mora Y., Mora J. 2002; AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli. J Bacteriol 184:2287–2295
    [Google Scholar]
  16. Eydallin G., Viale A. M., Morán-Zorzano M. T., Muñoz F. J., Montero M., Baroja-Fernández E., Pozueta-Romero J. 2007; Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett 581:2947–2953
    [Google Scholar]
  17. Fang F. C., Chen C. Y., Guiney D. G., Xu Y. 1996; Identification of σS-regulated genes in Salmonella typhimurium: complementary regulatory interactions between σS and cyclic AMP receptor protein. J Bacteriol 178:5112–5120
    [Google Scholar]
  18. Fellay R., Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 52:147–154
    [Google Scholar]
  19. Finan T. M., Hartweig E., LeMieux K., Bergman K., Walker G. C., Signer E. R. 1984; General transduction in Rhizobium meliloti. J Bacteriol 159:120–124
    [Google Scholar]
  20. Finan T. M., Hirsch A. M., Leigh J. A., Johansen E., Kuldau G. A., Deegan S., Walker G. C., Signer E. R. 1985; Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877
    [Google Scholar]
  21. Flechard M., Fontenelle C., Trautwetter A., Ermel G., Blanco C. 2009; Sinorhizobium meliloti rpoE2 is necessary for H2O2 stress resistance during the stationary growth phase. FEMS Microbiol Lett 290:25–31
    [Google Scholar]
  22. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A. other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672
    [Google Scholar]
  23. Giaever H. M., Styrvold O. B., Kaasen I., Strom A. R. 1988; Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849
    [Google Scholar]
  24. Gouffi K., Pichereau V., Rolland J. P., Thomas D., Bernard T., Blanco C. 1998; Sucrose is a nonaccumulated osmoprotectant in Sinorhizobium meliloti. J Bacteriol 180:5044–5051
    [Google Scholar]
  25. Gouffi K., Pica N., Pichereau V., Blanco C. 1999; Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl Environ Microbiol 65:1491–1500
    [Google Scholar]
  26. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  27. Hengge-Aronis R. 2002; Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395
    [Google Scholar]
  28. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. 1991; Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924
    [Google Scholar]
  29. Humann J. L., Ziemkiewicz H. T., Yurgel S. N., Kahn M. L. 2009; Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Appl Environ Microbiol 75:446–453
    [Google Scholar]
  30. Jebbar M., Sohn-Bosser L., Bremer E., Bernard T., Blanco C. 2005; Ectoine-induced proteins in Sinorhizobium meliloti include an ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism. J Bacteriol 187:1293–1304
    [Google Scholar]
  31. Kaasen I., Falkenberg P., Styrvold O. B., Strom A. R. 1992; Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR. J Bacteriol 174:889–898
    [Google Scholar]
  32. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176
    [Google Scholar]
  33. Kunte H. J., Crane R. A., Culham D. E., Richmond D., Wood J. M. 1999; Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. J Bacteriol 181:1537–1543
    [Google Scholar]
  34. Makihara F., Tsuzuki M., Sato K., Masuda S., Nagashima K. V., Abo M., Okubo A. 2005; Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f.sp. denitrificans IL106. Arch Microbiol 184:56–65
    [Google Scholar]
  35. McIntyre H. J., Davies H., Hore T. A., Miller S. H., Dufour J. P., Ronson C. W. 2007; Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol 73:3984–3992
    [Google Scholar]
  36. McLeod S. M., Xu J., Johnson R. C. 2000; Coactivation of the RpoS-dependent proP P2 promoter by Fis and cyclic AMP receptor protein. J Bacteriol 182:4180–4187
    [Google Scholar]
  37. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol 149:114–122
    [Google Scholar]
  38. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Montero M., Eydallin G., Viale A. M., Almagro G., Munoz F. J., Rahimpour M., Sesma M. T., Baroja-Fernandez E., Pozueta-Romero J. 2009; Escherichia coli glycogen metabolism is controlled by the PhoP–PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem J 424:129–141
    [Google Scholar]
  40. Murphy H. N., Stewart G. R., Mischenko V. V., Apt A. S., Harris R., McAlister M. S., Driscoll P. C., Young D. B., Robertson B. D. 2005; The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 280:14524–14529
    [Google Scholar]
  41. Pichereau V., Pocard J.-A., Hamelin J., Blanco C., Bernard T. 1998; Differential effects of dimethylsulfoniopropionate, dimethylsulfonioacetate, and other S-methylated compounds on the growth of Sinorhizobium meliloti at low and high osmolarities. Appl Environ Microbiol 64:1420–1429
    [Google Scholar]
  42. Pinedo C. A., Bringhurst R. M., Gage D. J. 2008; Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production. J Bacteriol 190:2947–2956
    [Google Scholar]
  43. Roessler M., Müller V. 2001; Osmoadaptation in Bacteria and Archaea: common principles and differences. Environ Microbiol 3:743–754
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  45. Sauviac L., Philippe H., Phok K., Bruand C. 2007; An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J Bacteriol 189:4204–4216
    [Google Scholar]
  46. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73
    [Google Scholar]
  47. Seto A., Yoshijima H., Toyomasu K., Ogawa H. O., Kakuta H., Hosono K., Ueda K., Beppu T. 2004; Effective extracellular trehalose production by Cellulosimicrobium cellulans. Appl Microbiol Biotechnol 64:794–799
    [Google Scholar]
  48. Singer M. A., Lindquist S. 1998; Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648
    [Google Scholar]
  49. Sleator R. D., Hill C. 2002; Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71
    [Google Scholar]
  50. Smith L. T., Smith G. M. 1989; An osmoregulated dipeptide in stressed Rhizobium meliloti. J Bacteriol 171:4714–4717
    [Google Scholar]
  51. Streeter J. G. 1985; Accumulation of α, α-trehalose by Rhizobium bacteria and bacteroids. J Bacteriol 164:78–84
    [Google Scholar]
  52. Streeter J. G., Bhagwat A. 1999; Biosynthesis of trehalose from maltooligosaccharides in rhizobia. Can J Microbiol 45:716–721
    [Google Scholar]
  53. Streeter J. G., Gomez M. L. 2006; Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules. Appl Environ Microbiol 72:4250–4255
    [Google Scholar]
  54. Talibart R., Jebbar M., Gouesbet G., Himdi-Kabbab S., Wróblewski H., Blanco C., Bernard T. 1994; Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J Bacteriol 176:5210–5217
    [Google Scholar]
  55. Talibart R., Jebbar M., Gouffi K., Pichereau V., Gouesbet G., Blanco C., Bernard T., Pocard J. 1997; Transient accumulation of glycine betaine and dynamics of endogenous osmolytes in salt-stressed cultures of Sinorhizobium meliloti. Appl Environ Microbiol 63:4657–4663
    [Google Scholar]
  56. Tavernier P., Besson I. I., Portais J. C., Courtois J., Courtois B., Barbotin J. N. 1998; In vivo 13C-NMR studies of polymer synthesis in Rhizobium meliloti M5N1 strain. Biotechnol Bioeng 58:250–253
    [Google Scholar]
  57. Vriezen J. A., de Bruijn F. J., Nusslein K. 2007; Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol 73:3451–3459
    [Google Scholar]
  58. Wolf A., Krämer R., Morbach S. 2003; Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134
    [Google Scholar]
  59. Yancey P. H. 2005; Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830
    [Google Scholar]
  60. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. 1982; Living with water stress: evolution of osmolyte systems. Science 217:1214–1222
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034850-0
Loading
/content/journal/micro/10.1099/mic.0.034850-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed