1887

Abstract

To study the role of carbohydrates, in particular glucose, glucose 6-phosphate and mannose, as carbon substrates for extra- and intracellular replication of facultative intracellular enteric bacteria, mutants of two enteroinvasive (EIEC) strains and a serovar Typhimurium isolate were constructed that were defective in the uptake of glucose and mannose (Δ, ), glucose 6-phosphate (Δ) or all three carbohydrates (Δ, , ). The ability of these mutants to grow in RPMI medium containing the respective carbohydrates and in Caco-2 cells was compared with that of the corresponding wild-type strains. In the three strains, deletions of , or resulted in considerably different levels of inhibition of growth in the presence of glucose, mannose and glucose 6-phosphate, respectively, but hardly reduced their capability for intracellular replication in Caco-2 cells. Even the triple mutants Δ, , of the three enterobacterial strains were still able to replicate in Caco-2 cells, albeit at strain-specific lower rates than the corresponding wild-type strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034744-0
2010-04-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1176.html?itemId=/content/journal/micro/10.1099/mic.0.034744-0&mimeType=html&fmt=ahah

References

  1. Bell, K. S., Sebaihia, M., Pritchard, L., Holden, M. T., Hyman, L. J., Holeva, M. C., Thomson, N. R., Bentley, S. D., Churcher, L. J. & other authors ( 2004; ). Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A 101, 11105–11110.[CrossRef]
    [Google Scholar]
  2. Beuzón, C. R., Meresse, S., Unsworth, K. E., Ruiz-Albert, J., Garvis, S., Waterman, S. R., Ryder, T. A., Boucrot, E. & Holden, D. W. ( 2000; ). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19, 3235–3249.[CrossRef]
    [Google Scholar]
  3. Beuzón, C. R., Salcedo, S. P. & Holden, D. W. ( 2002; ). Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148, 2705–2715.
    [Google Scholar]
  4. Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heynker, H. L., Boyer, H. W., Crosa, J. H. & Falkow, S. ( 1992; ). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. 1977. Biotechnology 24, 153–171.
    [Google Scholar]
  5. Bowden, S. D., Rowley, G., Hinton, J. C. & Thompson, A. ( 2009; ). Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect Immun 77, 3117–3126.[CrossRef]
    [Google Scholar]
  6. Brumell, J. H. & Grinstein, S. ( 2004; ). Salmonella redirects phagosomal maturation. Curr Opin Microbiol 7, 78–84.[CrossRef]
    [Google Scholar]
  7. Clermont, O., Bonacorsi, S. & Bingen, E. ( 2000; ). Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66, 4555–4558.[CrossRef]
    [Google Scholar]
  8. Cossart, P. & Sansonetti, P. J. ( 2004; ). Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248.[CrossRef]
    [Google Scholar]
  9. Covarrubias, L., Cervantes, L., Covarrubias, A., Soberon, X., Vichido, I., Blanco, A., Kupersztoch-Portnoy, Y. M. & Bolivar, F. ( 1981; ). Construction and characterization of new cloning vehicles. V. Mobilization and coding properties of pBR322 and several deletion derivatives including pBR327 and pBR328. Gene 13, 25–35.[CrossRef]
    [Google Scholar]
  10. Dagberg, B. & Uhlin, B. E. ( 1992; ). Regulation of virulence-associated plasmid genes in enteroinvasive Escherichia coli. J Bacteriol 174, 7606–7612.
    [Google Scholar]
  11. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  12. Death, A. & Ferenci, T. ( 1993; ). The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res Microbiol 144, 529–537.[CrossRef]
    [Google Scholar]
  13. Erni, B. & Zanolari, B. ( 1985; ). The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. J Biol Chem 260, 15495–15503.
    [Google Scholar]
  14. Erni, B., Zanolari, B. & Kocher, H. P. ( 1987; ). The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262, 5238–5247.
    [Google Scholar]
  15. Eylert, E., Schar, J., Mertins, S., Stoll, R., Bacher, A., Goebel, W. & Eisenreich, W. ( 2008; ). Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69, 1008–1017.[CrossRef]
    [Google Scholar]
  16. Hautefort, I., Thompson, A., Eriksson-Ygberg, S., Parker, M. L., Lucchini, S., Danino, V., Bongaerts, R. J., Ahmad, N., Rhen, M. & Hinton, J. C. ( 2008; ). During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10, 958–984.[CrossRef]
    [Google Scholar]
  17. Henderson, P. J., Giddens, R. A. & Jones-Mortimer, M. C. ( 1977; ). Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J 162, 309–320.
    [Google Scholar]
  18. Island, M. D., Wei, B. Y. & Kadner, R. J. ( 1992; ). Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol 174, 2754–2762.
    [Google Scholar]
  19. Jin, Q., Yuan, Z., Xu, J., Wang, Y., Shen, Y., Lu, W., Wang, J., Liu, H., Yang, J. & other authors ( 2002; ). Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30, 4432–4441.[CrossRef]
    [Google Scholar]
  20. Johnson, T. J., Kariyawasam, S., Wannemuehler, Y., Mangiamele, P., Johnson, S. J., Doetkott, C., Skyberg, J. A., Lynne, A. M., Johnson, J. R. & Nolan, L. K. ( 2007; ). The genome sequence of avian pathogenic Escherichia coli strain O1 : K1 : H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189, 3228–3236.[CrossRef]
    [Google Scholar]
  21. Klumpp, J. & Fuchs, T. M. ( 2007; ). Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153, 1207–1220.[CrossRef]
    [Google Scholar]
  22. Lafont, F. & van der Goot, F. G. ( 2005; ). Bacterial invasion via lipid rafts. Cell Microbiol 7, 613–620.[CrossRef]
    [Google Scholar]
  23. Lucchini, S., Liu, H., Jin, Q., Hinton, J. C. & Yu, J. ( 2005; ). Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun 73, 88–102.[CrossRef]
    [Google Scholar]
  24. McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M. & other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  25. Meyer, D., Schneider-Fresenius, C., Horlacher, R., Peist, R. & Boos, W. ( 1997; ). Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179, 1298–1306.
    [Google Scholar]
  26. Nicoletti, M., Superti, F., Conti, C., Calconi, A. & Zagaglia, C. ( 1988; ). Virulence factors of lactose-negative Escherichia coli strains isolated from children with diarrhea in Somalia. J Clin Microbiol 26, 524–529.
    [Google Scholar]
  27. Phalipon, A. & Sansonetti, P. J. ( 2007; ). Shigella's ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 85, 119–129.[CrossRef]
    [Google Scholar]
  28. Postma, P. W. ( 1977; ). Galactose transport in Salmonella typhimurium. J Bacteriol 129, 630–639.
    [Google Scholar]
  29. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543–594.
    [Google Scholar]
  30. Sansonetti, P. J., d'Hauteville, H., Formal, S. B. & Toucas, M. ( 1982; ). Plasmid-mediated invasiveness of “Shigella-like” Escherichia coli. Ann Microbiol (Paris) 133, 351–355.
    [Google Scholar]
  31. Scherer, C. A., Hantman, M. J. & Miller, S. I. ( 1997; ). Salmonella invasion and delivery of protein effectors to mammalian cell cytoplasm. Trends Microbiol 5, 127–129.[CrossRef]
    [Google Scholar]
  32. Schwoppe, C., Winkler, H. H. & Neuhaus, H. E. ( 2002; ). Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J Bacteriol 184, 2108–2115.[CrossRef]
    [Google Scholar]
  33. Schwoppe, C., Winkler, H. H. & Neuhaus, H. E. ( 2003; ). Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coli. Eur J Biochem 270, 1450–1457.[CrossRef]
    [Google Scholar]
  34. Stock, J. B., Waygood, E. B., Meadow, N. D., Postma, P. W. & Roseman, S. ( 1982; ). Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem 257, 14543–14552.
    [Google Scholar]
  35. Vazquez-Torres, A. & Fang, F. C. ( 2000; ). Cellular routes of invasion by enteropathogens. Curr Opin Microbiol 3, 54–59.[CrossRef]
    [Google Scholar]
  36. Verhamme, D. T., Postma, P. W., Crielaard, W. & Hellingwerf, K. J. ( 2002; ). Cooperativity in signal transfer through the Uhp system of Escherichia coli. J Bacteriol 184, 4205–4210.[CrossRef]
    [Google Scholar]
  37. Welch, R. A., Burland, V., Plunkett, G., III, Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S. R., Boutin, A. & other authors ( 2002; ). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99, 17020–17024.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034744-0
Loading
/content/journal/micro/10.1099/mic.0.034744-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error