1887

Abstract

DSM 3043, whose genome has been sequenced, is known to degrade (,)-sulfolactate as a sole carbon and energy source for growth. Utilization of the compound(s) was shown to be quantitative, and an eight-gene cluster (Csal_1764–Csal_1771) was hypothesized to encode the enzymes in the degradative pathway. It comprised a transcriptional regulator (SuyR), a Tripartite Tricarboxylate Transporter-family uptake system for sulfolactate (SlcHFG), two sulfolactate dehydrogenases of opposite sulfonate stereochemistry, namely novel SlcC and ComC [()-sulfolactate dehydrogenase] [EC 1.1.1.272] and desulfonative sulfolactate sulfo-lyase (SuyAB) [EC 4.4.1.24]. Inducible reduction of 3-sulfopyruvate, inducible SuyAB activity and induction of an unknown protein were detected. Separation of the soluble proteins from induced cells on an anion-exchange column yielded four relevant fractions. Two different fractions reduced sulfopyruvate with NAD(P)H, a third yielded SuyAB activity, and the fourth contained the unknown protein. The latter was identified by peptide-mass fingerprinting as SlcH, the candidate periplasmic binding protein of the transport system. Separated SuyB was also identified by peptide-mass fingerprinting. ComC was partially purified and identified by peptide-mass fingerprinting. The ()-sulfolactate that ComC produced from sulfopyruvate was a substrate for SuyAB, which showed that SuyAB is ()-sulfolactate sulfo-lyase. SlcC was purified to homogeneity. This enzyme also formed sulfolactate from sulfopyruvate, but the latter enantiomer was not a substrate for SuyAB. SlcC was obviously ()-sulfolactate dehydrogenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034736-0
2010-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/967.html?itemId=/content/journal/micro/10.1099/mic.0.034736-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Garcia, M. T., Vargas, C., Canovas, D., Nieto,J. J. & Ventosa, A. ( 2001; ). Chromohalobactersalexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst EvolMicrobiol 51, 1457–1462.
    [Google Scholar]
  2. Baldock, M. I., Denger, K., Smits, T. H. M. & Cook, A. M. ( 2007; ). Roseovarius sp. strain 217: aerobictaurine dissimilation via acetate kinase and acetate-CoA ligase. FEMS Microbiol Lett 271, 202–206.[CrossRef]
    [Google Scholar]
  3. Benning, C. ( 2007; ). Questions remainingin sulfolipid biosynthesis: a historical perspective. PhotosynthRes 92, 199–203.
    [Google Scholar]
  4. Benson, A. S. & Lee, R. F. ( 1972; ).The sulphoglycolytic pathway in plants. Biochem J 128, 29P–30P.
    [Google Scholar]
  5. Bonsen, P. P. M., Spudich, J. A., Nelson, D. L. & Kornberg,A. ( 1969; ). Biochemical studies of bacterial sporulationand germination. XII. A sulfonic acid as a major sulfur compound of Bacillussubtilis spores. J Bacteriol 98, 62–68.
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid andsensitive method for the quantitation of microgram quantities of protein utilizingthe principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Cook, A. M. ( 1987; ). Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev 46, 93–116.[CrossRef]
    [Google Scholar]
  8. Danko, A. S., Saski, C. A., Tomkins, J. P. & Freedman, D.L. ( 2006; ). Involvement of coenzyme M during aerobicbiodegradation of vinyl chloride and ethene by Pseudomonas putidastrain AJ and Ochrobactrum sp. strain TD. Appl EnvironMicrobiol 72, 3756–3758.
    [Google Scholar]
  9. Denger, K., Ruff, J., Rein, U. & Cook, A. M. ( 2001; ). Sulfoacetaldehyde sulfo-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primarysequence. Biochem J 357, 581–586.[CrossRef]
    [Google Scholar]
  10. Denger, K., Weinitschke, S., Hollemeyer, K. & Cook, A. M. ( 2004; ). Sulfoacetate generated by Rhodopseudomonaspalustris from taurine. Arch Microbiol 182, 254–258.
    [Google Scholar]
  11. Denger, K., Smits, T. H. M. & Cook, A. M. ( 2006; ). l-Cysteate sulpho-lyase, a widespread, pyridoxal5′-phosphate-coupled desulphonative enzyme purified from Silicibacterpomeroyi DSS-3T. Biochem J 394, 657–664.[CrossRef]
    [Google Scholar]
  12. Denger, K., Weinitschke, S., Smits, T. H. M., Schleheck, D. &Cook, A. M. ( 2008; ). Bacterial sulfite dehydrogenasesin organotrophic metabolism: separation and identification in Cupriavidusnecator H16 and in Delftia acidovorans SPH-1. Microbiology 154, 256–263.[CrossRef]
    [Google Scholar]
  13. Denger, K., Mayer, J., Buhmann, M., Weinitschke, S., Smits,T. H. M. & Cook, A. M. ( 2009; ). Bifurcated degradativepathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteatesulfo-lyase. J Bacteriol 191, 5648–5656.[CrossRef]
    [Google Scholar]
  14. Folkers, K., Koniuszy, F. & Shavel, J. ( 1944; ). Erythrina alkaloids. XIV. Isolation and characterization oferysothiovine and erysothiopine, new alkaloids containing sulfur. J Am Chem Soc 66, 1083–1087.[CrossRef]
    [Google Scholar]
  15. Graham, D. E. & White, R. H. ( 2002; ). Elucidation of methanogenic coenzyme biosyntheses: from spectroscopyto genomics. Nat Prod Rep 19, 133–147.[CrossRef]
    [Google Scholar]
  16. Graupner, M., Xu, H. & White, R. H. ( 2000; ). Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzingreactions involved in coenzyme biosynthesis in methanoarchaea. J Bacteriol 182, 3688–3692.[CrossRef]
    [Google Scholar]
  17. Haupt, I. & Bocker, H. ( 1965; ). Onformation of dl-alanine in cultures of a mutant of Streptomycesalbus var. metamycinus JA 3626. Hoppe Seylers Z PhysiolChem 342, 132–139.
    [Google Scholar]
  18. Irimia, A., Madern, D., Zaccai, G. & Vellieux, F. M. D. ( 2004; ). Methanoarchaeal sulfolactate dehydrogenase:prototype of a new family of NADH-dependent enzymes. EMBO J 23, 1234–1244.[CrossRef]
    [Google Scholar]
  19. Junker, F., Field, J. A., Bangerter, F., Ramsteiner, K., Kohler,H.-P., Joannou, C. L., Mason, J. R., Leisinger, T. & Cook, A. M. ( 1994; ). Oxygenation and spontaneous deamination of 2-aminobenzenesulphonicacid in Alcaligenes sp. strain O-1 with subsequent metaring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem J 300, 429–436.
    [Google Scholar]
  20. Kappler, U., Bennett, B., Rethmeier, J., Schwarz, G., Deutzmann,R., McEwan, A. G. & Dahl, C. ( 2000; ). Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization,and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275, 13202–13212.[CrossRef]
    [Google Scholar]
  21. Kennedy, S. I. T. & Fewson, C. A. ( 1968; ). Enzymes of the mandelate pathway in Bacterium N.C.I.B. 8250. Biochem J 107, 497–506.
    [Google Scholar]
  22. Krejčík, Z., Denger, K., Weinitschke, S., Hollemeyer,K., Pačes, V., Cook, A. M. & Smits, T. H. M. ( 2008; ). Sulfoacetate released during the assimilation of taurine-nitrogenby Neptuniibacter caesariensis: purification of sulfoacetaldehydedehydrogenase. Arch Microbiol 190, 159–168.[CrossRef]
    [Google Scholar]
  23. Laemmli, U. K. ( 1970; ). Cleavage of structuralproteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  24. Lee, R. F. & Benson, A. A. ( 1972; ).The metabolism of glyceryl [35S]sulfoquinovoside by thecoral tree, Erythrina crista-galli, and alfalfa, Medicago sativa. Biochim Biophys Acta 261, 35–37.[CrossRef]
    [Google Scholar]
  25. Lincoln, B. C., Des Rosiers, C. & Brunengraber, H. ( 1987; ). Metabolism of S-3-hydroxybutyrate in theperfused rat liver. Arch Biochem Biophys 259, 149–156.[CrossRef]
    [Google Scholar]
  26. Metzler, D. E. ( 2003; ). Biochemistry:The Chemical Reactions of Living Cells, 2nd edn. Amsterdam: AcademicPress.
  27. Pfennig, N. ( 1978; ). Rhodocycluspurpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiringmember of the family Rhodospirillaceae. Int J Syst Bacteriol 28, 283–288.[CrossRef]
    [Google Scholar]
  28. Reichenbecher, W., Kelly, D. P. & Murrell, J. C. ( 1999; ). Desulfonation of propanesulfonic acid by Comamonasacidovorans strain P53: evidence for an alkanesulfonate sulfonatase andan atypical sulfite dehydrogenase. Arch Microbiol 172, 387–392.[CrossRef]
    [Google Scholar]
  29. Rein, U., Gueta, R., Denger, K., Ruff, J., Hollemeyer, K. &Cook, A. M. ( 2005; ). Dissimilation of cysteate via3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151, 737–747.[CrossRef]
    [Google Scholar]
  30. Roy, A. B., Hewlins, M. J. E., Ellis, A. J., Harwood, J. L. &White, G. F. ( 2003; ). Glycolytic breakdown of sulfoquinovosein bacteria: a missing link in the sulfur cycle. Appl Environ Microbiol 69, 6434–6441.[CrossRef]
    [Google Scholar]
  31. Ruff, J., Denger, K. & Cook, A. M. ( 2003; ). Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purificationfrom Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369, 275–285.[CrossRef]
    [Google Scholar]
  32. Shibuya, I., Yagi, T. & Benson, A. A. ( 1963; ). Sulfonic acids in algae. In Studies on Microalgae and PhotosyntheticBacteria, pp. 627–636. Edited by Japanese Society of Plant Physiologists.Tokyo: The University of Tokyo Press.
  33. Sörbo, B. ( 1987; ). Sulfate: turbidimetricand nephelometric methods. Methods Enzymol 143, 3–6.
    [Google Scholar]
  34. Thurnheer, T., Köhler, T., Cook, A. M. & Leisinger,T. ( 1986; ). Orthanilic acid and analogues as carbonsources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132, 1215–1220.
    [Google Scholar]
  35. Weinitschke, S., Sharma, P. I., Stingl, U., Cook, A. M. &Smits, T. H. M. ( 2010; ). Gene clusters involved inisethionate degradation in terrestrial and marine bacteria. ApplEnviron Microbiol 76, 618–621.
    [Google Scholar]
  36. Weinstein, C. L. & Griffith, O. W. ( 1988; ). Cysteinesulfonate and β-sulfopyruvate metabolism. Partitioningbetween decarboxylation, transamination, and reduction pathways. J Biol Chem 263, 3735–3743.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034736-0
Loading
/content/journal/micro/10.1099/mic.0.034736-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error