1887

Abstract

DSM 3043, whose genome has been sequenced, is known to degrade (,)-sulfolactate as a sole carbon and energy source for growth. Utilization of the compound(s) was shown to be quantitative, and an eight-gene cluster (Csal_1764–Csal_1771) was hypothesized to encode the enzymes in the degradative pathway. It comprised a transcriptional regulator (SuyR), a Tripartite Tricarboxylate Transporter-family uptake system for sulfolactate (SlcHFG), two sulfolactate dehydrogenases of opposite sulfonate stereochemistry, namely novel SlcC and ComC [()-sulfolactate dehydrogenase] [EC1.1.1.272] and desulfonative sulfolactate sulfo-lyase (SuyAB) [EC4.4.1.24]. Inducible reduction of 3-sulfopyruvate, inducible SuyAB activity and induction of an unknown protein were detected. Separation of the soluble proteins from induced cells on an anion-exchange column yielded four relevant fractions. Two different fractions reduced sulfopyruvate with NAD(P)H, a third yielded SuyAB activity, and the fourth contained the unknown protein. The latter was identified by peptide-mass fingerprinting as SlcH, the candidate periplasmic binding protein of the transport system. Separated SuyB was also identified by peptide-mass fingerprinting. ComC was partially purified and identified by peptide-mass fingerprinting. The ()-sulfolactate that ComC produced from sulfopyruvate was a substrate for SuyAB, which showed that SuyAB is ()-sulfolactate sulfo-lyase. SlcC was purified to homogeneity. This enzyme also formed sulfolactate from sulfopyruvate, but the latter enantiomer was not a substrate for SuyAB. SlcC was obviously ()-sulfolactate dehydrogenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034736-0
2010-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/967.html?itemId=/content/journal/micro/10.1099/mic.0.034736-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Garcia M. T., Vargas C., Canovas D., Nieto J. J., Ventosa A. 2001; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51:1457–1462
    [Google Scholar]
  2. Baldock M. I., Denger K., Smits T. H. M., Cook A. M. 2007; Roseovarius sp. strain 217: aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase. FEMS Microbiol Lett 271:202–206
    [Google Scholar]
  3. Benning C. 2007; Questions remaining in sulfolipid biosynthesis: a historical perspective. Photosynth Res 92:199–203
    [Google Scholar]
  4. Benson A. S., Lee R. F. 1972; The sulphoglycolytic pathway in plants. Biochem J 128:29P–30P
    [Google Scholar]
  5. Bonsen P. P. M., Spudich J. A., Nelson D. L., Kornberg A. 1969; Biochemical studies of bacterial sporulation and germination. XII. A sulfonic acid as a major sulfur compound of Bacillus subtilis spores. J Bacteriol 98:62–68
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  7. Cook A. M. 1987; Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev 46:93–116
    [Google Scholar]
  8. Danko A. S., Saski C. A., Tomkins J. P., Freedman D. L. 2006; Involvement of coenzyme M during aerobic biodegradation of vinyl chloride and ethene by Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD. Appl Environ Microbiol 72:3756–3758
    [Google Scholar]
  9. Denger K., Ruff J., Rein U., Cook A. M. 2001; Sulfoacetaldehyde sulfo-lyase (EC 4.4.1.12) from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J 357:581–586
    [Google Scholar]
  10. Denger K., Weinitschke S., Hollemeyer K., Cook A. M. 2004; Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol 182:254–258
    [Google Scholar]
  11. Denger K., Smits T. H. M., Cook A. M. 2006; l-Cysteate sulpho-lyase, a widespread, pyridoxal5′-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3T . Biochem J 394:657–664
    [Google Scholar]
  12. Denger K., Weinitschke S., Smits T. H. M., Schleheck D., Cook A. M. 2008; Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1. Microbiology 154:256–263
    [Google Scholar]
  13. Denger K., Mayer J., Buhmann M., Weinitschke S., Smits T. H. M., Cook A. M. 2009; Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and ( S)-cysteate sulfo-lyase. J Bacteriol 191:5648–5656
    [Google Scholar]
  14. Folkers K., Koniuszy F., Shavel J. 1944; Erythrina alkaloids. XIV. Isolation and characterization of erysothiovine and erysothiopine, new alkaloids containing sulfur. J Am Chem Soc 66:1083–1087
    [Google Scholar]
  15. Graham D. E., White R. H. 2002; Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19:133–147
    [Google Scholar]
  16. Graupner M., Xu H., White R. H. 2000; Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J Bacteriol 182:3688–3692
    [Google Scholar]
  17. Haupt I., Bocker H. 1965; On formation of dl-alanine in cultures of a mutant of Streptomyces albus var. metamycinus JA 3626. Hoppe Seylers Z Physiol Chem 342:132–139
    [Google Scholar]
  18. Irimia A., Madern D., Zaccai G., Vellieux F. M. D. 2004; Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes. EMBO J 23:1234–1244
    [Google Scholar]
  19. Junker F., Field J. A., Bangerter F., Ramsteiner K., Kohler H.-P., Joannou C. L., Mason J. R., Leisinger T., Cook A. M. 1994; Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem J 300:429–436
    [Google Scholar]
  20. Kappler U., Bennett B., Rethmeier J., Schwarz G., Deutzmann R., McEwan A. G., Dahl C. 2000; Sulfite : cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275:13202–13212
    [Google Scholar]
  21. Kennedy S. I. T., Fewson C. A. 1968; Enzymes of the mandelate pathway in Bacterium N.C.I.B. 8250. Biochem J 107:497–506
    [Google Scholar]
  22. Krejčík Z., Denger K., Weinitschke S., Hollemeyer K., Pačes V., Cook A. M., Smits T. H. M. 2008; Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 190:159–168
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Lee R. F., Benson A. A. 1972; The metabolism of glyceryl [35S]sulfoquinovoside by the coral tree, Erythrina crista-galli, and alfalfa, Medicago sativa. Biochim Biophys Acta 261:35–37
    [Google Scholar]
  25. Lincoln B. C., Des Rosiers C., Brunengraber H. 1987; Metabolism of S-3-hydroxybutyrate in the perfused rat liver. Arch Biochem Biophys 259:149–156
    [Google Scholar]
  26. Metzler D. E. 2003 Biochemistry: The Chemical Reactions of Living Cells, 2nd edn. Amsterdam: Academic Press;
  27. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288
    [Google Scholar]
  28. Reichenbecher W., Kelly D. P., Murrell J. C. 1999; Desulfonation of propanesulfonic acid by Comamonas acidovorans strain P53: evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch Microbiol 172:387–392
    [Google Scholar]
  29. Rein U., Gueta R., Denger K., Ruff J., Hollemeyer K., Cook A. M. 2005; Dissimilation of cysteate via3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151:737–747
    [Google Scholar]
  30. Roy A. B., Hewlins M. J. E., Ellis A. J., Harwood J. L., White G. F. 2003; Glycolytic breakdown of sulfoquinovose in bacteria: a missing link in the sulfur cycle. Appl Environ Microbiol 69:6434–6441
    [Google Scholar]
  31. Ruff J., Denger K., Cook A. M. 2003; Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369:275–285
    [Google Scholar]
  32. Shibuya I., Yagi T., Benson A. A. Japanese Society of Plant Physiologists 1963; Sulfonic acids in algae. In Studies on Microalgae and Photosynthetic Bacteria pp 627–636 Edited by Tokyo: The University of Tokyo Press;
    [Google Scholar]
  33. Sörbo B. 1987; Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143:3–6
    [Google Scholar]
  34. Thurnheer T., Köhler T., Cook A. M., Leisinger T. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220
    [Google Scholar]
  35. Weinitschke S., Sharma P. I., Stingl U., Cook A. M., Smits T. H. M. 2010; Gene clusters involved in isethionate degradation in terrestrial and marine bacteria. Appl Environ Microbiol 76:618–621
    [Google Scholar]
  36. Weinstein C. L., Griffith O. W. 1988; Cysteinesulfonate and β-sulfopyruvate metabolism. Partitioning between decarboxylation, transamination, and reduction pathways. J Biol Chem 263:3735–3743
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034736-0
Loading
/content/journal/micro/10.1099/mic.0.034736-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error