Characterization of tRNA processing in a conditional CCase mutant reveals the participation of RNase R in its quality control Free

Abstract

We generated a conditional CCase mutant of to explore the participation of the tRNA nucleotidyltransferase (CCA transferase or CCase) in the maturation of the single-copy tRNA, which lacks an encoded CCA 3′ end. We observed that shorter tRNA species, presumably lacking CCA, only accumulated when the inducible Pspac :  was introduced into an mutant strain, but not in combination with . We sequenced the tRNA 3′ ends produced in the various mutant tRNA species to detect maturation and decay intermediates and observed that decay of the tRNA occurs through the addition of poly(A) or heteropolymeric tails. A few clones corresponding to full-size tRNAs contained either CCA or other C and/or A sequences, suggesting that these are substrates for repair and/or decay. We also observed editing of tRNA at position 21, which seems to occur preferentially in mature tRNAs. Altogether, our results provide evidence for the participation of the gene product in the maturation of tRNAs lacking CCA. We also suggest that RNase R exoRNase in participates in the quality control of tRNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034652-0
2010-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2102.html?itemId=/content/journal/micro/10.1099/mic.0.034652-0&mimeType=html&fmt=ahah

References

  1. Andrade J. M., Hajnsdorf E., Régnier P., Arraiano C. M. 2009; The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA 15:316–326
    [Google Scholar]
  2. Bralley P., Chang S. A., Jones G. H. 2005; A phylogeny of bacterial RNA nucleotidyltransferases: Bacillus halodurans contains two tRNA nucleotidyltransferases. J Bacteriol 187:5927–5936
    [Google Scholar]
  3. Bralley P., Gust B., Chang S., Chater K. F., Jones G. H. 2006; RNA 3′-tail synthesis in Streptomyces: in vitro and in vivo activities of RNase PH, the SCO3896 gene product and polynucleotide phosphorylase. Microbiology 152:627–636
    [Google Scholar]
  4. Bralley P., Cozad M., Jones G. H. 2009; Geobacter sulfurreducens encodes separate C- and A-adding tRNA nucleotidyltransferases and a poly(A) polymerase. J Bacteriol 191:109–114
    [Google Scholar]
  5. Cairrao F., Cruz A., Mori H., Arraiano C. M. 2003; Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 50:1349–1360
    [Google Scholar]
  6. Campos-Guillén J., Bralley P., Jones G. H., Bechhofer D. H., Olmedo G. 2005; Addition of poly(A) and heteropolymeric 3′ ends in Bacillus subtilis wild-type and polynucleotide phosphorylase-deficient strains. J Bacteriol 187:4698–4706
    [Google Scholar]
  7. Cheng Z. F., Deutscher M. P. 2005; An important role for Rnase R in mRNA decay. Mol Cell 17:313–318
    [Google Scholar]
  8. Condon C. 2003; Processing and degradation in Bacillus subtilis. Microbiol Mol Biol Rev 67:157–174
    [Google Scholar]
  9. Dubrovsky E. B., Dubrovskaya V. A., Levinger L., Schiffer S., Marchfelder A. 2004; Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3′ ends in vivo. Nucleic Acids Res 32:255–262
    [Google Scholar]
  10. Grunberg-Manago M. 1999; Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33:193–227
    [Google Scholar]
  11. Kim L., Mogk A., Schumann W. 1996; A xylose-inducible Bacillus subtilis integration vector and its application. Gene 181:71–76
    [Google Scholar]
  12. Kobayashi K., Ehrlich S. D., Albertini A., Amati G., Andersen K. K., Arnaud M., Asai K., Ashikaga S., Aymerich S. other authors 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683
    [Google Scholar]
  13. Lalonde M. S., Zuo Y., Zhang J., Gong X., Wu S., Malhotra A., Li Z. 2007; Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. RNA 13:1957–1968
    [Google Scholar]
  14. Li Z., Deutscher M. P. 1996; Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86:503–512
    [Google Scholar]
  15. Li Z., Reimers S., Pandit S., Deutscher M. P. 2002; RNA quality control: degradation of defective transfer RNA. EMBO J 21:1132–1138
    [Google Scholar]
  16. Mayer M., Schiffer S., Marchfelder A. 2000; tRNA 3′ processing in plants: nuclear and mitochondrial activities differ. Biochemistry 39:2096–2105
    [Google Scholar]
  17. Mohanty B. K., Kushner S. R. 2000; Polynucleotide phosphorylase functions both as a 3′ right-arrow 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci U S A 97:11966–11971
    [Google Scholar]
  18. Mohanty B. K., Kushner S. R. 2007; Ribonuclease P processes polycistronic tRNA transcripts in Escherichia coli independent of ribonuclease E. Nucleic Acids Res 35:7614–7625
    [Google Scholar]
  19. Mohanty B. K., Kushner S. R. 2008; Rho-independent transcription terminators inhibit RNase P processing of the secG leuU and metT tRNA polycistronic transcripts in Escherichia coli. Nucleic Acids Res 36:364–375
    [Google Scholar]
  20. Mörl M., Marchfelder A. 2001; The final cut: the importance of tRNA 3′-processing. EMBO Rep 2:17–20
    [Google Scholar]
  21. Neuenfeldt A., Just A., Betat H., Morl M. 2008; Evolution of tRNA nucleotidyltransferases: a small deletion generated CC-adding enzymes. Proc Natl Acad Sci U S A 105:7953–7958
    [Google Scholar]
  22. Oussenko I. A., Abe T., Ujiie H., Muto A., Bechhofer D. H. 2005; Participation of 3′-to-5′ exoribonucleases in the turnover of Bacillus subtilis mRNA. J Bacteriol 187:2758–2767
    [Google Scholar]
  23. Ow M. C., Kushner S. R. 2002; Initiation of tRNA maturation by RNase E is essential for cell viability in Escherichia coli. Genes Dev 16:1102–1115
    [Google Scholar]
  24. Pellegrini O., Nezzar J., Marchfelder A., Putzer H., Condon C. 2003; Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis. EMBO J 22:4534–4543
    [Google Scholar]
  25. Petit M. A., Dervyn E., Rose M., Entian K. D., McGovern S., Ehrlich S. D., Bruand C. 1998; PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol 29:261–273
    [Google Scholar]
  26. Randau L., Schroder I., Soll D. 2008; Life without RNase P. Nature 453:120–123
    [Google Scholar]
  27. Raynal L. C., Krisch H. M., Carpousis A. J. 1998; The Bacillus subtilis nucleotidyltransferase is a tRNA CCA-adding enzyme. J Bacteriol 180:6276–6282
    [Google Scholar]
  28. Reuven N. B., Zhou Z., Deutscher M. P. 1997; Functional overlap of tRNA nucleotidyltransferase, poly(A) polymerase I, and polynucleotide phosphorylase. J Biol Chem 272:33255–33259
    [Google Scholar]
  29. Schurer H., Schiffer S., Marchfelder A., Morl M. 2001; This is the end: processing, editing and repair at the tRNA 3′-terminus. Biol Chem 382:1147–1156
    [Google Scholar]
  30. Seth M., Thurlow D. L., Hou Y. M. 2002; Poly(C) synthesis by class I and class II CCA-adding enzymes. Biochemistry 41:4521–4532
    [Google Scholar]
  31. Steinmetz M., Richter R. 1994; Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142:79–83
    [Google Scholar]
  32. Tomita K., Weiner A. M. 2001; Collaboration between CC- and A-adding enzymes to build and repair the 3′ terminal CCA of tRNA in Aquifex aeolicus. Science 294:1334–1336
    [Google Scholar]
  33. Tomita K., Weiner A. M. 2002; Closely related CC- and A-adding enzymes collaborate to construct and repair the 3-terminal CCA of tRNA in Synechocystsis sp. and Deinococcus radiodurans. J Biol Chem 277:48192–48198
    [Google Scholar]
  34. Tomita K., Ueda T., Watanabe K. 1996; RNA editing in the acceptor stem of squid mitochondrial tRNA(Tyr. Nucleic Acids Res 24:4987–4991
    [Google Scholar]
  35. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104
    [Google Scholar]
  36. Varshney U., Lee C. P., RajBhandary U. L. 1991; Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem 266:24712–24718
    [Google Scholar]
  37. Vincent H. A., Deutscher M. P. 2006; Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 281:29769–29775
    [Google Scholar]
  38. Wang W., Bechhofer D. H. 1996; Properties of a Bacillus subtilis polynucleotide phosphorylase deletion strain. J Bacteriol 178:2375–2382
    [Google Scholar]
  39. Wen T., Oussenko I. A., Pellegrini O., Bechhofer D. H., Condon C. 2005; Ribonuclease PH plays a major role in the exonucleolytic maturation of CCA-containing tRNA precursors in Bacillus subtilis. Nucleic Acids Res 33:3636–3643
    [Google Scholar]
  40. Yansura D. G., Henner D. J. 1984; Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A 81:439–443
    [Google Scholar]
  41. Yehudai-Resheff S., Hirsh M., Schuster G. 2001; Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol Cell Biol 21:5408–5416
    [Google Scholar]
  42. Yokobori S., Pääbo S. 1997; Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNATyr. J Mol Biol 265:95–99
    [Google Scholar]
  43. Youngman P., Perkins J. B., Losick R. 1984; Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid 12:1–9
    [Google Scholar]
  44. Zhu L., Deutscher M. P. 1987; tRNA nucleotidyltransferase is not essential for Escherichia coli viability. EMBO J 6:2473–2477
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034652-0
Loading
/content/journal/micro/10.1099/mic.0.034652-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed