1887

Abstract

Sulfur globules are formed as obligatory intermediates during the oxidation of reduced sulfur compounds in many environmentally important photo- and chemolithoautotrophic bacteria. It is well established that the so-called Dsr proteins are essential for the oxidation of zero-valent sulfur accumulated in the globules; however, hardly anything is known about the regulation of gene expression. Here, we present a closer look at the regulation of the genes in the phototrophic sulfur bacterium . The genes are expressed in a reduced sulfur compound-dependent manner and neither sulfite, the product of the reverse-acting dissimilatory sulfite reductase DsrAB, nor the alternative electron donor malate inhibit the gene expression. Moreover, we show the oxidation of sulfur to sulfite to be the rate-limiting step in the oxidation of sulfur to sulfate as sulfate production starts concomitantly with the upregulation of the expression of the genes. Real-time RT-PCR experiments suggest that the genes and are additionally expressed from secondary internal promoters, pointing to a special function of the encoded proteins. Earlier structural analyses indicated the presence of a helix–turn–helix (HTH)-like motif in DsrC. We therefore assessed the DNA-binding capability of the protein and provide evidence for a possible regulatory function of DsrC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034645-0
2010-03-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/764.html?itemId=/content/journal/micro/10.1099/mic.0.034645-0&mimeType=html&fmt=ahah

References

  1. Beller, H. R., Chain, P. S. G., Letain, T. E., Chakicherla,A., Larimer, F. W., Richardson, P. M., Coleman, M. A., Wood, A. P. & Kelly,D. P. ( 2006a; ). The genome sequence of the obligatelychemolithoautotrophic, facultatively anaerobic bacterium Thiobacillusdenitrificans. J Bacteriol 188, 1473–1488.[CrossRef]
    [Google Scholar]
  2. Beller, H. R., Letain, T. E., Chakicherla, A., Kane, S. R.,Legler, T. C. & Coleman, M. A. ( 2006b; ). Whole-genometranscriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol 188, 7005–7015.[CrossRef]
    [Google Scholar]
  3. Bradford, M. M. ( 1976; ). A rapid andsensitive method for the quantitation of microgram quantities of protein utilizingthe principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  4. Chan, L.-K., Morgan-Kiss, R. & Hanson, T. E. ( 2008a; ). Sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum): genetic and proteomic analyses. In Microbial Sulfur Metabolism, pp. 117–126. Edited by C. Dahl &C. G. Friedrich. Heidelberg & Berlin: Springer.
  5. Chan, L.-K., Morgan-Kiss, R. & Hanson, T. E. ( 2008b; ). Genetic and proteomic studies of sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum). In Sulfur Metabolism in Phototrophic Organisms, pp. 357–373. Editedby R. Hell, C. Dahl, D. B. Knaff & T. Leustek. Dordrecht: Springer.
  6. Cort, J. R., Mariappan, S. V. S., Kim, C.-Y., Park, M. S., Peat,T. S., Waldo, G. S., Terwilliger, T. C. & Kennedy, M. A. ( 2001; ). Solution structure of Pyrobaculum aerophilum DsrC,an archaeal homologue of the gamma subunit of dissimilatory sulfite reductase. Eur J Biochem 268, 5842–5850.[CrossRef]
    [Google Scholar]
  7. Cort, J. R., Selan, U., Schulte, A., Grimm, F., Kennedy, M.A. & Dahl, C. ( 2008; ). Allochromatium vinosum DsrC: solution-state NMR structure, redox properties, and interactionwith DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. J Mol Biol 382, 692–707.[CrossRef]
    [Google Scholar]
  8. Dahl, C. ( 1996; ). Insertional gene inactivationin a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Microbiology 142, 3363–3372.[CrossRef]
    [Google Scholar]
  9. Dahl, C. ( 2008; ). Inorganic sulfur compoundsas electron donors in purple sulfur bacteria. In Sulfur Metabolism inPhototrophic Organisms, pp. 289–317. Edited by R. Hell, C. Dahl,D. B. Knaff & T. Leustek. Dordrecht: Springer.
  10. Dahl, C. & Prange, A. ( 2006; ). Bacterialsulfur globules: occurrence, structure and metabolism. In Inclusions inProkaryotes, pp. 21–51. Edited by J. M. Shively. Heidelberg: Springer.
  11. Dahl, C., Engels, S., Pott-Sperling, A. S., Schulte, A., Sander,J., Lübbe, Y., Deuster, O. & Brune, D. C. ( 2005; ). Novel genes of the dsr gene cluster and evidence for close interactionof Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187, 1392–1404.[CrossRef]
    [Google Scholar]
  12. Dahl, C., Schulte, A., Stockdreher, Y., Hong, C., Grimm, F.,Sander, J., Kim, R., Kim, S.-H. & Shin, D. H. ( 2008; ). Structural and molecular genetic insight into a widespread sulfur oxidationpathway. J Mol Biol 384, 1287–1300.[CrossRef]
    [Google Scholar]
  13. Eisen, J. A., Nelson, K. E., Paulsen, I. T., Heidelberg, J.F., Wu, M., Dodson, R. J., Deboy, R., Gwinn, M. L., Nelson, W. C. & otherauthors ( 2002; ). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 99, 9509–9514.[CrossRef]
    [Google Scholar]
  14. Fey, A., Eichler, S., Flavier, S., Christen, R., Höfle,M. G. & Guzmán, C. A. ( 2004; ). Establishmentof a real-time PCR-based approach for accurate quantification of bacterialRNA targets in water, using Salmonella as a model organism. Appl Environ Microbiol 70, 3618–3623.[CrossRef]
    [Google Scholar]
  15. Frigaard, N.-U. & Bryant, D. A. ( 2008; ). Genomic insights into the sulfur metabolism of phototrophic green sulfurbacteria. In Sulfur Metabolism in Phototrophic Organisms, pp. 337–355.Edited by R. Hell, C. Dahl, D. B. Knaff & T. Leustek. Dordrecht: Springer.
  16. Frigaard, N.-U. & Dahl, C. ( 2009; ).Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54, 103–200.
    [Google Scholar]
  17. Fuller, R. C., Smillie, R. M., Sisler, E. C. & Kronberg,H. L. ( 1961; ). Carbon metabolism in Chromatium. J Biol Chem 236, 2140–2149.
    [Google Scholar]
  18. Grimm, F., Franz, B. & Dahl, C. ( 2008; ). Thiosulfate and sulfur oxidation in purple sulfur bacteria. In MicrobialSulfur Metabolism, pp. 101–116. Edited by C. Dahl & C. G. Friedrich.Berlin & Heidelberg: Springer.
  19. Haveman, S. A., Brunelle, V., Voordouw, J. K., Voordouw, G.,Heidelberg, J. F. & Rabus, R. ( 2003; ). Gene expressionanalysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenboroughindicates an important role for alcohol dehydrogenase. J Bacteriol 185, 4345–4353.[CrossRef]
    [Google Scholar]
  20. Hübner, P., Willison, J. C., Vignais, P. & Bickle,T. A. ( 1991; ). Expression of regulatory nifgenes in Rhodobacter capsulatus. J Bacteriol 173, 2993–2999.
    [Google Scholar]
  21. Hurlbert, R. E. ( 1968; ). Effect of thiol-bindingreagents on the metabolism of Chromatium D. J Bacteriol 95, 1706–1712.
    [Google Scholar]
  22. Hurlbert, R. E. & Lascelles, J. ( 1963; ). Ribulose diphosphate carboxylase in Thiorhodaceae. J Gen Microbiol 33, 445–458.[CrossRef]
    [Google Scholar]
  23. Imhoff, J. F. ( 2003; ). Phylogenetic taxonomyof the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53, 941–951.[CrossRef]
    [Google Scholar]
  24. Kappler, U. & Dahl, C. ( 2001; ). Enzymologyand molecular biology of prokaryotic sulfite oxidation. FEMS MicrobiolLett 203, 1–9.
    [Google Scholar]
  25. Karkhoff-Schweizer, R. R., Bruschi, M. & Voordouw, G. ( 1993; ). Expression of the γ-subunit gene ofdesulfoviridin-type dissimilatory sulfite reductase and of the α-and β-subunit genes is not coordinately regulated. Eur J Biochem 211, 501–507.[CrossRef]
    [Google Scholar]
  26. Lee, Y.-H., Nadaraia, S., Gu, D., Becker, D. F. & Tanner,J. J. ( 2003; ). Structure of the proline dehydrogenasedomain of the multifunctional PutA flavoprotein. Nat Struct Biol 10, 109–114.[CrossRef]
    [Google Scholar]
  27. Loy, A., Duller, S., Baranyi, C., Mußmann, M., Ott, J.,Sharon, I., Béjà, O., Le Paslier, D., Dahl, C. & Wagner,M. ( 2009; ). Reverse dissimilatory sulfite reductaseas phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 11, 289–299.[CrossRef]
    [Google Scholar]
  28. Lübbe, Y. J., Youn, H.-S., Timkovich, R. & Dahl, C. ( 2006; ). Siro(haem)amide in Allochromatiumvinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c-diamide synthase, for sulphur oxidation. FEMS MicrobiolLett 261, 194–202.
    [Google Scholar]
  29. Miller, J. H. ( 1972; ). Assay of β-galactosidase. In Experiments in Molecular Genetics, pp.352–355. Edited by J. H. Miller. Cold Spring Harbor, NY: Cold SpringHarbor Laboratory.
  30. Numata, T., Fukai, S., Ikeuchi, Y., Suzuki, T. & Nureki,O. ( 2006; ). Structural basis for sulfur relay to RNAmediated by heterohexameric TusBCD complex. Structure 14, 357–366.[CrossRef]
    [Google Scholar]
  31. Oliveira, T. F., Vonrhein, C., Matia, P. M., Venceslau, S. S.,Pereira, I. A. C. & Archer, M. ( 2008; ). The crystalstructure of Desulfovibrio vulgaris dissimilatory sulfite reductasebound to DsrC provides novel insights into the mechanism of sulfate respiration. J Biol Chem 283, 34141–34149.[CrossRef]
    [Google Scholar]
  32. Pattaragulwanit, K. & Dahl, C. ( 1995; ). Development of a genetic system for a purple sulfur bacterium: conjugativeplasmid transfer in Chromatium vinosum. Arch Microbiol 164, 217–222.[CrossRef]
    [Google Scholar]
  33. Pfennig, N. & Trüper, H. G. ( 1989; ). Anoxygenic phototrophic bacteria. In Bergey's Manual of SystematicBacteriology, vol. 3, pp. 1635–1653. Edited by J. T. Staley, M.P. Bryant, N. Pfennig & J. G. Holt. Baltimore: Williams & Wilkins.
  34. Pott, A. S. & Dahl, C. ( 1998; ). Sirohaemsulfite reductase and other proteins encoded in the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144, 1881–1894.[CrossRef]
    [Google Scholar]
  35. Prange, A., Engelhardt, H., Trüper, H. G. & Dahl, C. ( 2004; ). The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genesand expression studies by real-time RT PCR. Arch Microbiol 182, 165–174.
    [Google Scholar]
  36. Roof, D. M. & Roth, J. R. ( 1992; ).Autogenous regulation of ethanolamine utilization by a transcriptional activatorof the eut operon in Salmonella typhimurium. J Bacteriol 174, 6634–6643.
    [Google Scholar]
  37. Sahl, H. G. & Trüper, H. G. ( 1977; ). Enzymes of CO2 fixation in Chromatiaceae. FEMS Microbiol Lett 2, 129–132.[CrossRef]
    [Google Scholar]
  38. Sander, J. & Dahl, C. ( 2009; ). Metabolismof inorganic sulfur compounds in purple bacteria. In The Purple PhototrophicBacteria, pp. 595–622. Edited by C. N. Hunter, F. Daldal, M. C.Thurnauer & J. T. Beatty. Dordrecht: Springer.
  39. Sander, J., Engels-Schwarzlose, S. & Dahl, C. ( 2006; ). Importance of the DsrMKJOP complex for sulfur oxidationin Allochromatium vinosum and phylogenetic analysis of related complexesin other prokaryotes. Arch Microbiol 186, 357–366.[CrossRef]
    [Google Scholar]
  40. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J.,Thierbach, G. & Pühler, A. ( 1994; ). Smallmobilizable multi-purpose cloning vectors derived from the Escherichiacoli plasmids pK18 and pK19: selection of defined deletions in the chromosomeof Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  41. Schedel, M. & Trüper, H. G. ( 1979; ). Purification of Thiobacillus denitrificans siroheme sulfitereductase and investigation of some molecular and catalytic properties. Biochim Biophys Acta 568, 454–467.[CrossRef]
    [Google Scholar]
  42. Schedel, M., Vanselow, M. & Trüper, H. G. ( 1979; ). Siroheme sulfite reductase isolated from Chromatiumvinosum. Purification and investigation of some of its molecular andcatalytic properties. Arch Microbiol 121, 29–36.[CrossRef]
    [Google Scholar]
  43. Steudel, R., Holdt, G., Visscher, P. T. & van Gemerden,H. ( 1990; ). Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153, 432–437.[CrossRef]
    [Google Scholar]
  44. Wek, R. C. & Hatfield, G. W. ( 1986; ). Examination of the internal promoter, PE, in the ilvGMEDA operon of E. coli K-12. Nucleic Acids Res 14, 2763–2777.[CrossRef]
    [Google Scholar]
  45. White, C. E. & Winans, S. C. ( 2007; ). The quorum-sensing transcription factor TraR decodes its DNA bindingsite by direct contacts with DNA bases and by detection of DNA flexibility. Mol Microbiol 64, 245–256.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034645-0
Loading
/content/journal/micro/10.1099/mic.0.034645-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 764 - 773

Bacterial strains and plasmids PCR primers



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error