1887

Abstract

The presence and diversity of the genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (a key enzyme of the Calvin–Benson cycle of autotrophic CO assimilation) were investigated in pure cultures of seven genera of halophilic chemolithoautotrophic sulfur-oxidizing bacteria (SOB) and in sediments from a hypersaline lake in which such bacteria have been recently discovered. All of the halophilic SOB strains (with the exception of ) possessed the gene encoding RuBisCO form I, while the gene encoding RuBisCO form II was detected only in some of the pure cultures. The general topologies of the CbbL/CbbM trees and the 16S rRNA gene tree were different, but both markers showed that the halophilic SOB genera formed independent lineages in the Gammaproteobacteria. In some cases, such as with several strains of the genus and with , the clustering was incongruent with the positions of these strains on the ribosomal tree. In the tree, the clustering of and strains was incongruent with their branching in both and 16S rRNA gene trees. and genes related to those found in the analysed halophilic SOB were also detected in a sediment from a hypersaline lake in Kulunda Steppe (Russia). Most of the and genes belonged to members of the genus . In the clone library, sequences related to those of and were detected as minor components. Some of the environmental sequences belonged to as yet unknown phylotypes, representing deep lineages of halophilic autotrophs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034603-0
2010-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2016.html?itemId=/content/journal/micro/10.1099/mic.0.034603-0&mimeType=html&fmt=ahah

References

  1. Alfreider A., Vogt C., Hoffmann D., Babel W. 2003; Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. Microb Ecol 45:317–328
    [Google Scholar]
  2. Baker S. H., Jin S., Aldrich H. C., Howard G. T., Shively J. M. 1998; Insertion mutation of the form I cbbL gene encoding ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in Thiobacillus neapolitanus results in expression of form II RuBisCO, loss of carboxysomes, and an increased CO2 requirement for growth. J Bacteriol 180:4133–4139
    [Google Scholar]
  3. Banciu H. L., Sorokin D. Y., Tourova T. P., Galinski E. A., Muntyan M. S., Kuenen J. G., Muyzer G. 2008; Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. . Extremophiles 12:391–404
    [Google Scholar]
  4. Cannon G. C., Baker S. H., Soyer F., Johnson D. R., Bradburne C. E., Mehlman J. L., Davies P. S., Jiang Q. L., Heinhorst S., Shively J. M. 2003; Organization of carboxysome genes in the thiobacilli. Curr Microbiol 46:115–119
    [Google Scholar]
  5. Elsaied H. E., Kimura H., Naganuma T. 2007; Composition of archaeal, bacterial, and eukaryal RuBisCO genotypes in three Western Pacific arc hydrothermal vent systems. Extremophiles 11:191–202
    [Google Scholar]
  6. English R. S., Williams C. A., Lorbach S. C., Shively J. M. 1992; Two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Thiobacillus denitrificans. FEMS Microbiol Lett 73:111–119
    [Google Scholar]
  7. Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J. 2001; Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol 67:2873–2882
    [Google Scholar]
  8. Friedrich C. G., Bardischewsky F., Rother D., Quentmeier A., Fischer J. 2005; Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259
    [Google Scholar]
  9. Giri B. J., Bano N., Hollibaugh J. T. 2004; Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 70:3443–3448
    [Google Scholar]
  10. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704
    [Google Scholar]
  11. Loy A., Duller S., Baranyi C., Mußmann M., Ott J., Sharon I., Béjà O., Le Paslier D. 2009; Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 11:289–299
    [Google Scholar]
  12. Markowitz V. M., Ivanova N., Palaniappan K., Szeto E., Korzeniewski F., Lykidis A., Anderson I., Mavromatis K., Kunin V. other authors 2006; An experimental metagenome data management and analysis system. Bioinformatics 22:e359–e367
    [Google Scholar]
  13. Oren A. 1999; Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348
    [Google Scholar]
  14. Selesi D., Schmid M., Hartmann A. 2005; Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes ( cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71:175–184
    [Google Scholar]
  15. Seshadri R., Kravitz S. A., Smarr L., Gilna P., Frazier M. 2007; CAMERA: a community resource for metagenomics. PLoS Biol 5:e75
    [Google Scholar]
  16. Singleton D. R., Furlong M. A., Rathbun S. L., Whitman W. B. 2001; Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376
    [Google Scholar]
  17. Sorokin D. Y. 2008; Diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. In Microbial Sulfur Metabolism pp 225–237 Edited by Dahl C., Friedrich C. G. Proceedings of the International Symposium on Microbial Sulfur Metabolism 29 June to 2 July 2006 Münster, Germany. Berlin: Springer;
    [Google Scholar]
  18. Sorokin D. Y., Tourova T. P., Lysenko A. M., Muyzer G. 2006a; Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152:3013–3023
    [Google Scholar]
  19. Sorokin D. Y., Tourova T. P., Kolganova T. V., Spiridonova E. M., Berg I. A., Muyzer G. 2006b; Thiomicrospira halophila sp. nov., a moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56:2375–2380
    [Google Scholar]
  20. Sorokin D. Y., Tourova T. P., Bezsoudnova E. Y., Pol A., Muyzer G. 2007a; Denitrifcation in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen; nov. sp. nov; – a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes. Arch Microbiol 187:441–450
    [Google Scholar]
  21. Sorokin D. Y., Tourova T. P., Braker G., Muyzer G. 2007b; Thiohalomonas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57:1582–1589
    [Google Scholar]
  22. Sorokin D. Y., Tourova T. P., Muyzer G., Kuenen G. J. 2008a; Thiohalospira halophila gen. nov., sp. nov. and Thiohalospira alkaliphila sp. nov., novel obligately chemolithoautotrophic, halophilic, sulfur-oxidizing gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 58:1685–1692
    [Google Scholar]
  23. Sorokin D. Y., Tourova T. P., Galinski E. A., Muyzer G., Kuenen J. G. 2008b; Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep lineage gammaproteobacterium from hypersaline habitats. Int J Syst Evol Microbiol 58:2890–2897
    [Google Scholar]
  24. Sorokin D. Y., Kovaleva O. L., Tourova T. P., Muyzer G. 2010; Thiohalobacter thiocyanaticus gen. nov., sp. nov., a moderately halophilic, sulfur-oxidizing gammaproteobacterium from hypersaline lakes, that utilizes thiocyanate. Int J Syst Evol Microbiol 60:444–450
    [Google Scholar]
  25. Spiridonova E. M., Berg I. A., Kolganova T. V., Ivanovsky R. N., Kuznetsov B. B., Tourova T. P. 2004; An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Mikrobiologiia 73:377–387
    [Google Scholar]
  26. Stoner M. T., Shively J. M. 1993; Cloning and expression of the d-ribulose-1,5-bisphosphate carboxylase/oxygenase form II gene from Thiobacillus intermedius in Escherichia coli. FEMS Microbiol Lett 107:287–292
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 9:3251–3270
    [Google Scholar]
  28. Tourova T. P., Spiridonova E. M., Berg I. A., Kuznetsov B. B., Sorokin D. Yu. 2006; Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in obligately chemolithoautotrophic sulfur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology 152:2159–2169
    [Google Scholar]
  29. Tourova T. P., Spiridonova E. M., Berg I. A., Slobodova N. V., Boulygina E. S., Sorokin D. Y. 2007; Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences. Int J Syst Evol Microbiol 57:2387–2398
    [Google Scholar]
  30. (2009; Phylogeny of the purple sulfur bacterium Thiocapsa sp. strain BBS on the basis of analysis of 16S rRNA, cbbL and nifH and description of new species Thiocapsa bogorovii sp.nov. Mikrobiologiia 78:381–392
    [Google Scholar]
  31. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  32. Watson G. M. F., Tabita F. R. 1997; Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034603-0
Loading
/content/journal/micro/10.1099/mic.0.034603-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error