Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study Free

Abstract

This study shows that the superoxide radical (O), a direct indicator of oxidative stress, is involved in the differentiation of the phytopathogenic filamentous fungi , , and , shown by using superoxide dismutase (SOD) mimetics to decrease their sclerotial differentiation. The production rate of O and SOD levels in these fungi, as expected, were significantly lowered by the SOD mimetics, with concomitant decrease of the indirect indicator of oxidative stress, lipid peroxidation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034579-0
2010-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/960.html?itemId=/content/journal/micro/10.1099/mic.0.034579-0&mimeType=html&fmt=ahah

References

  1. Belozerskaia T. A., Gessler N. N. 2006; Oxidative stress and differentiation in Neurospora crassa. Microbiology 75:497–501
    [Google Scholar]
  2. Bridson E. Y., Brecker A. 1970; Design and formulation of microbial culture media. In Methods in Microbiology pp 229–295 Edited by Norris J. R., Ribbons D. W. London: Academic Press;
    [Google Scholar]
  3. Buege J. A., Aust S. D. 1978; Microsomal lipid peroxidation. In Methods in Enzymology pp 302–310 Edited by Fleisher S., Packer L. New York: Academic Press;
    [Google Scholar]
  4. Chet I., Henis Y. 1975; Sclerotial morphogenesis in fungi. Annu Rev Phytopathol 13:169–192
    [Google Scholar]
  5. Chet I., Henis Y., Mitchell R. 1967; Chemical composition of hyphal and sclerotial walls of Sclerotium rolfsii Sacc. Can J Microbiol 13:137–141
    [Google Scholar]
  6. Chet I., Henis Y., Kislev N. 1969; Ultrastructure of sclerotia and hyphae of Sclerotium rolfsii Sacc. J Gen Microbiol 57:143–147
    [Google Scholar]
  7. Day B. J., Shawen S., Liochev S. I., Crapo J. D. 1995; A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J Pharmacol Exp Ther 275:1227–1232
    [Google Scholar]
  8. Fang G.-C., Hanau R. M., Vaillancourt L. J. 2002; The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fungal Genet Biol 36:155–165
    [Google Scholar]
  9. Gardner P. R., Nguyen D. D., White C. W. 1996; Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells. Arch Biochem Biophys 325:20–28
    [Google Scholar]
  10. Georgiou C. D. 1997; Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi. Mycol Res 101:460–464
    [Google Scholar]
  11. Georgiou C. D., Patsoukis N., Papapostolou I., Zervoudakis G. 2006; Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol 46:691–712
    [Google Scholar]
  12. Georgiou C. D., Papapostolou I., Grintzalis K. 2008; Superoxide radical detection in cells, tissues, organisms (animals, plants, insects, microorganisms) and soils. Nat Protoc 3:1679–1692
    [Google Scholar]
  13. Halliwell B., Gutteridge C. M. J. 1999 Free Radicals in Biology and Medicine, 3rd edn. Oxford: Oxford University Press;
  14. Hwang C.-S., Rhie G., Oh J.-H., Huh W.-K., Yim H.-S., Kang S.-O. 2002; Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148:3705–3713
    [Google Scholar]
  15. Kubota S., Yang T. J. 1984; Bis[cyclo(histidylhistidine)]copper(II) complex that mimicks the active center of superoxide dismutase has its catalytic activity. Proc Natl Acad Sci U S A 81:3283–3286
    [Google Scholar]
  16. Le Tourneau D. 1979; Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology 69:887–890
    [Google Scholar]
  17. Lu C., Bucher G., Sander W. 2004; Photoinduced interactions between oxidized and reduced lipoic acid and riboflavin (Vitamin B2. ChemPhysChem 5:47–56
    [Google Scholar]
  18. MacKenzie A., Martin W. 1998; Loss of endothelium-derived nitric oxide in rabbit aorta by oxidant stress: restoration by superoxide dismutase mimetics. Br J Pharmacol 124:719–728
    [Google Scholar]
  19. Misra H. P., Fridovich I. 1977; Superoxide dismutase: a photochemical augmentation assay. Arch Biochem Biophys 181:308–312
    [Google Scholar]
  20. Mok J. S., Paisley K., Martin W. 1998; Inhibition of nitrergic neurotransmission in the bovine retractor penis muscle by an oxidant stress: effects of superoxide dismutase mimetics. Br J Pharmacol 124:111–118
    [Google Scholar]
  21. Patsoukis N., Georgiou C. D. 2007a; Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi. Mycopathologia 163:335–347
    [Google Scholar]
  22. Patsoukis N., Georgiou C. D. 2007b; Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani. Arch Microbiol 188:225–233
    [Google Scholar]
  23. Patsoukis N., Georgiou C. D. 2008a; Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi. Mycol Res 112:602–610
    [Google Scholar]
  24. Patsoukis N., Georgiou D. C. 2008b; Thiol redox state and oxidative stress affect sclerotial differentiation of the phytopathogenic fungi Sclerotium rolfsii and Sclerotinia sclerotiorum. J Appl Microbiol 104:42–50
    [Google Scholar]
  25. Patsoukis N., Georgiou D. C. 2008c; Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress. Can J Microbiol 54:28–36
    [Google Scholar]
  26. Townsend B. B., Willetts H. J. 1954; The development of sclerotia of certain fungi. Trans Br Mycol Soc 37:213–221
    [Google Scholar]
  27. Willetts H. J. 1971; The survival of fungal sclerotia under adverse environmental conditions. Biol Rev Camb Philos Soc 46:387–407
    [Google Scholar]
  28. Willetts H. J. 1978; Sclerotium formation. In The Filamentous Fungi pp 197–213 Edited by Smith J. E., Berry D. R. New York: Wiley;
    [Google Scholar]
  29. Willetts H. J. 1997; Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycol Res 101:939–952
    [Google Scholar]
  30. Willetts H. J., Wong J. A.-L. 1980; The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Bot Rev 46:101–165
    [Google Scholar]
  31. Yamada J., Yoshimura S., Yamakawa H., Sawada M., Nakagawa M., Hara S., Kaku Y., Iwama T., Naganawa T. other authors 2003; Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell death caused by pyrogallol or hypoxia/reoxygenation. Neurosci Res 45:1–8
    [Google Scholar]
  32. Zamora R., Alaiz M., Hidalgo J. F. 1997; Feed-back inhibition of oxidative stress by oxidized lipid/amino acid reaction products. Biochemistry 36:15765–15771
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034579-0
Loading
/content/journal/micro/10.1099/mic.0.034579-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed