1887

Abstract

This study shows that the superoxide radical (O), a direct indicator of oxidative stress, is involved in the differentiation of the phytopathogenic filamentous fungi , , and , shown by using superoxide dismutase (SOD) mimetics to decrease their sclerotial differentiation. The production rate of O and SOD levels in these fungi, as expected, were significantly lowered by the SOD mimetics, with concomitant decrease of the indirect indicator of oxidative stress, lipid peroxidation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034579-0
2010-03-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/960.html?itemId=/content/journal/micro/10.1099/mic.0.034579-0&mimeType=html&fmt=ahah

References

  1. Belozerskaia T. A., Gessler N. N.. 2006; Oxidative stress and differentiation in Neurospora crassa. Microbiology75:497–501
    [Google Scholar]
  2. Bridson E. Y., Brecker A.. 1970; Design and formulation of microbial culture media. In Methods in Microbiology pp229–295 Edited by Norris J. R., Ribbons D. W.. London: Academic Press;
  3. Buege J. A., Aust S. D.. 1978; Microsomal lipid peroxidation. In Methods in Enzymology pp302–310 Edited by Fleisher S., Packer L.. New York: Academic Press;
  4. Chet I., Henis Y.. 1975; Sclerotial morphogenesis in fungi. Annu Rev Phytopathol13:169–192
    [Google Scholar]
  5. Chet I., Henis Y., Mitchell R.. 1967; Chemical composition of hyphal and sclerotial walls of Sclerotium rolfsii Sacc. Can J Microbiol13:137–141
    [Google Scholar]
  6. Chet I., Henis Y., Kislev N.. 1969; Ultrastructure of sclerotia and hyphae of Sclerotium rolfsii Sacc. J Gen Microbiol57:143–147
    [Google Scholar]
  7. Day B. J., Shawen S., Liochev S. I., Crapo J. D.. 1995; A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J Pharmacol Exp Ther275:1227–1232
    [Google Scholar]
  8. Fang G.-C., Hanau R. M., Vaillancourt L. J.. 2002; The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fungal Genet Biol36:155–165
    [Google Scholar]
  9. Gardner P. R., Nguyen D. D., White C. W.. 1996; Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells. Arch Biochem Biophys325:20–28
    [Google Scholar]
  10. Georgiou C. D.. 1997; Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi. Mycol Res101:460–464
    [Google Scholar]
  11. Georgiou C. D., Patsoukis N., Papapostolou I., Zervoudakis G.. 2006; Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol46:691–712
    [Google Scholar]
  12. Georgiou C. D., Papapostolou I., Grintzalis K.. 2008; Superoxide radical detection in cells, tissues, organisms (animals, plants, insects, microorganisms) and soils. Nat Protoc3:1679–1692
    [Google Scholar]
  13. Halliwell B., Gutteridge C. M. J.. 1999; Free Radicals in Biology and Medicine, 3rd edn. Oxford: Oxford University Press;
  14. Hwang C.-S., Rhie G., Oh J.-H., Huh W.-K., Yim H.-S., Kang S.-O.. 2002; Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology148:3705–3713
    [Google Scholar]
  15. Kubota S., Yang T. J.. 1984; Bis[cyclo(histidylhistidine)]copper(II) complex that mimicks the active center of superoxide dismutase has its catalytic activity. Proc Natl Acad Sci U S A81:3283–3286
    [Google Scholar]
  16. Le Tourneau D.. 1979; Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology69:887–890
    [Google Scholar]
  17. Lu C., Bucher G., Sander W.. 2004; Photoinduced interactions between oxidized and reduced lipoic acid and riboflavin (Vitamin B2. ChemPhysChem5:47–56
    [Google Scholar]
  18. MacKenzie A., Martin W.. 1998; Loss of endothelium-derived nitric oxide in rabbit aorta by oxidant stress: restoration by superoxide dismutase mimetics. Br J Pharmacol124:719–728
    [Google Scholar]
  19. Misra H. P., Fridovich I.. 1977; Superoxide dismutase: a photochemical augmentation assay. Arch Biochem Biophys181:308–312
    [Google Scholar]
  20. Mok J. S., Paisley K., Martin W.. 1998; Inhibition of nitrergic neurotransmission in the bovine retractor penis muscle by an oxidant stress: effects of superoxide dismutase mimetics. Br J Pharmacol124:111–118
    [Google Scholar]
  21. Patsoukis N., Georgiou C. D.. 2007a; Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi. Mycopathologia163:335–347
    [Google Scholar]
  22. Patsoukis N., Georgiou C. D.. 2007b; Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani. Arch Microbiol188:225–233
    [Google Scholar]
  23. Patsoukis N., Georgiou C. D.. 2008a; Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi. Mycol Res112:602–610
    [Google Scholar]
  24. Patsoukis N., Georgiou D. C.. 2008b; Thiol redox state and oxidative stress affect sclerotial differentiation of the phytopathogenic fungi Sclerotium rolfsii and Sclerotinia sclerotiorum. J Appl Microbiol104:42–50
    [Google Scholar]
  25. Patsoukis N., Georgiou D. C.. 2008c; Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress. Can J Microbiol54:28–36
    [Google Scholar]
  26. Townsend B. B., Willetts H. J.. 1954; The development of sclerotia of certain fungi. Trans Br Mycol Soc37:213–221
    [Google Scholar]
  27. Willetts H. J.. 1971; The survival of fungal sclerotia under adverse environmental conditions. Biol Rev Camb Philos Soc46:387–407
    [Google Scholar]
  28. Willetts H. J.. 1978; Sclerotium formation. In The Filamentous Fungi pp197–213 Edited by Smith J. E., Berry D. R. New York: Wiley;
  29. Willetts H. J.. 1997; Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycol Res101:939–952
    [Google Scholar]
  30. Willetts H. J., Wong J. A.-L.. 1980; The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Bot Rev46:101–165
    [Google Scholar]
  31. Yamada J., Yoshimura S., Yamakawa H., Sawada M., Nakagawa M., Hara S., Kaku Y., Iwama T., Naganawa T.. other authors 2003; Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell death caused by pyrogallol or hypoxia/reoxygenation. Neurosci Res45:1–8
    [Google Scholar]
  32. Zamora R., Alaiz M., Hidalgo J. F.. 1997; Feed-back inhibition of oxidative stress by oxidized lipid/amino acid reaction products. Biochemistry36:15765–15771
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034579-0
Loading
/content/journal/micro/10.1099/mic.0.034579-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error