1887

Abstract

is able to use a variety of carbon sources and current knowledge suggests that cholesterol is used as a carbon source during infection. The catabolized cholesterol is used both as an energy source (ATP generation) and as a source of precursor molecules for the synthesis of complex methyl-branched fatty acids. In previous studies, we described a TetR-type transcriptional repressor, , that controls the expression of a number of genes involved in cholesterol catabolism. In this study, we describe a second TetR-type repressor, which we call We knocked this gene out in and used microarrays and quantitative RT-PCR to examine the effects on gene expression. We identified a palindromic regulatory motif for KstR2, showed that this motif is present in three promoter regions in mycobacteria and rhodococcus, and demonstrated binding of purified KstR2 to the motif. Using a combination of motif location analysis, gene expression analysis and the examination of gene conservation, we suggest that controls the expression of a 15 gene regulon. Like , and the regulon are highly conserved among the actinomycetes and studies in rhodococcus suggest a role for these genes in cholesterol catabolism. The functional significance of the regulon and implications for the control of cholesterol utilization are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034538-0
2010-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1362.html?itemId=/content/journal/micro/10.1099/mic.0.034538-0&mimeType=html&fmt=ahah

References

  1. Bailey, T. L. & Elkan, C. ( 1994; ). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36.
    [Google Scholar]
  2. Bailey, T. L. & Gribskov, M. ( 1998; ). Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54.[CrossRef]
    [Google Scholar]
  3. Benjamini, Y. ( 1995; ). Controlling false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57, 289–300.
    [Google Scholar]
  4. Brzostek, A., Dziadek, B., Rumijowska-Galewicz, A., Pawelczyk, J. & Dziadek, J. ( 2007; ). Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. FEMS Microbiol Lett 275, 106–112.[CrossRef]
    [Google Scholar]
  5. Camus, J. C., Pryor, M. J., Medigue, C. & Cole, S. T. ( 2002; ). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148, 2967–2973.
    [Google Scholar]
  6. Capyk, J. K., D'Angelo, I., Strynadka, N. C. & Eltis, L. D. ( 2009; ). Characterization of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J Biol Chem 284, 9937–9946.[CrossRef]
    [Google Scholar]
  7. Carver, T. J., Rutherford, K. M., Berriman, M., Rajandream, M. A., Barrell, B. G. & Parkhill, J. ( 2005; ). ACT: the Artemis Comparison Tool. Bioinformatics 21, 3422–3423.[CrossRef]
    [Google Scholar]
  8. Chang, J. C., Harik, N. S., Liao, R. P. & Sherman, D. R. ( 2007; ). Identification of mycobacterial genes that alter growth and pathology in macrophages and in mice. J Infect Dis 196, 788–795.[CrossRef]
    [Google Scholar]
  9. Chang, J. C., Miner, M. D., Pandey, A. K., Gill, W. P., Harik, N. S., Sassetti, C. M. & Sherman, D. R. ( 2009; ). igr genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191, 5232–5239.[CrossRef]
    [Google Scholar]
  10. Cole, S. T. ( 1999; ). Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett 452, 7–10.[CrossRef]
    [Google Scholar]
  11. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. ( 2004; ). WebLogo: a sequence logo generator. Genome Res 14, 1188–1190.[CrossRef]
    [Google Scholar]
  12. Dubnau, E., Fontan, P., Manganelli, R., Soares-Appel, S. & Smith, I. ( 2002; ). Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun 70, 2787–2795.[CrossRef]
    [Google Scholar]
  13. Dubnau, E., Chan, J., Mohan, V. P. & Smith, I. ( 2005; ). Responses of Mycobacterium tuberculosis to growth in the mouse lung. Infect Immun 73, 3754–3757.[CrossRef]
    [Google Scholar]
  14. Honer zu Bentrup, K. & Russell, D. G. ( 2001; ). Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol 9, 597–605.[CrossRef]
    [Google Scholar]
  15. Hu, Y., van der Geize, R., Besra, G. S., Gurcha, S. S., Liu, A., Rohde, M., Singh, M. & Coates, A. ( 2010; ). 3-Ketosteroid 9α-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75, 107–121.[CrossRef]
    [Google Scholar]
  16. Kendall, S. L., Withers, M., Soffair, C. N., Moreland, N. J., Gurcha, S., Sidders, B., Frita, R., Ten Bokum, A., Besra, G. S. & other authors ( 2007; ). A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65, 684–699.[CrossRef]
    [Google Scholar]
  17. Knol, J., Bodewits, K., Hessels, G. I., Dijkhuizen, L. & van der Geize, R. ( 2008; ). 3-Keto-5α-steroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J 410, 339–346.[CrossRef]
    [Google Scholar]
  18. Lack, N. A., Kawamura, A., Fullam, E., Laurieri, N., Beard, S., Russell, A. J., Evangelopoulos, D., Westwood, I. & Sim, E. ( 2009; ). Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis. Biochem J 418, 369–378.[CrossRef]
    [Google Scholar]
  19. Ladunga, I. ( 2002; ). Finding homologs to nucleotide sequences using network blast searches. Curr Protoc Bioinformatics 26, 3.3.1–3.3.26.
    [Google Scholar]
  20. McKinney, J. D., Honer zu Bentrup, K., Munoz-Elias, E. J., Miczak, A., Chen, B., Chan, W. T., Swenson, D., Sacchettini, J. C., Jacobs, W. R., Jr & Russell, D. G. ( 2000; ). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738.[CrossRef]
    [Google Scholar]
  21. Munoz-Elias, E. J. & McKinney, J. D. ( 2005; ). Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11, 638–644.[CrossRef]
    [Google Scholar]
  22. Munoz-Elias, E. J., Upton, A. M., Cherian, J. & McKinney, J. D. ( 2006; ). Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60, 1109–1122.[CrossRef]
    [Google Scholar]
  23. Nesbitt, N. M., Yang, X., Fontan, P., Kolesnikova, I., Smith, I., Sampson, N. S. & Dubnau, E. ( 2010; ). A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78, 275–282.[CrossRef]
    [Google Scholar]
  24. Nevozhay, D., Adams, R. M., Murphy, K. F., Josic, K. & Balazsi, G. ( 2009; ). Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc Natl Acad Sci U S A 106, 5123–5128.[CrossRef]
    [Google Scholar]
  25. Pandey, A. K. & Sassetti, C. M. ( 2008; ). Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105, 4376–4380.[CrossRef]
    [Google Scholar]
  26. Parish, T. & Stoker, N. G. ( 2000; ). Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146, 1969–1975.
    [Google Scholar]
  27. Parish, T., Gordhan, B. G., McAdam, R. A., Duncan, K., Mizrahi, V. & Stoker, N. G. ( 1999; ). Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology 145, 3497–3503.
    [Google Scholar]
  28. Rengarajan, J., Bloom, B. R. & Rubin, E. J. ( 2005; ). Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102, 8327–8332.[CrossRef]
    [Google Scholar]
  29. Sacchettini, J. C., Rubin, E. J. & Freundlich, J. S. ( 2008; ). Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat Rev Microbiol 6, 41–52.[CrossRef]
    [Google Scholar]
  30. Sambrook, J. & Russell, D. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  31. Sassetti, C. M. & Rubin, E. J. ( 2003; ). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100, 12989–12994.[CrossRef]
    [Google Scholar]
  32. Schnappinger, D., Ehrt, S., Voskuil, M. I., Liu, Y., Mangan, J. A., Monahan, I. M., Dolganov, G., Efron, B., Butcher, P. D. & other authors ( 2003; ). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198, 693–704.[CrossRef]
    [Google Scholar]
  33. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. ( 2002; ). Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31, 64–68.[CrossRef]
    [Google Scholar]
  34. Smyth, G. K., Michaud, J. & Scott, H. S. ( 2005; ). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067–2075.[CrossRef]
    [Google Scholar]
  35. Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T. & Jacobs, W. R., Jr ( 1990; ). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4, 1911–1919.[CrossRef]
    [Google Scholar]
  36. Tailleux, L., Waddell, S. J., Pelizzola, M., Mortellaro, A., Withers, M., Tanne, A., Castagnoli, P. R., Gicquel, B., Stoker, N. G. & other authors ( 2008; ). Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS One 3, e1403 [CrossRef]
    [Google Scholar]
  37. Talaat, A. M., Lyons, R., Howard, S. T. & Johnston, S. A. ( 2004; ). The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 101, 4602–4607.[CrossRef]
    [Google Scholar]
  38. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  39. Van der Geize, R., Yam, K., Heuser, T., Wilbrink, M. H., Hara, H., Anderton, M. C., Sim, E., Dijkhuizen, L., Davies, J. E. & other authors ( 2007; ). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104, 1947–1952.[CrossRef]
    [Google Scholar]
  40. Wernisch, L., Kendall, S. L., Soneji, S., Wietzorrek, A., Parish, T., Hinds, J., Butcher, P. D. & Stoker, N. G. ( 2003; ). Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 19, 53–61.[CrossRef]
    [Google Scholar]
  41. Yam, K. C., D'Angelo, I., Kalscheuer, R., Zhu, H., Wang, J. X., Snieckus, V., Ly, L. H., Converse, P. J., Jacobs, W. R., Jr & other authors ( 2009; ). Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5, e1000344 [CrossRef]
    [Google Scholar]
  42. Yang, X., Nesbitt, N. M., Dubnau, E., Smith, I. & Sampson, N. S. ( 2009; ). Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48, 3819–3821.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034538-0
Loading
/content/journal/micro/10.1099/mic.0.034538-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error