1887

Abstract

In plant-pathogenic fungi, the 1 mitogen-activated protein kinase (MAPK) signalling pathway plays an essential role in regulating the development of penetration structures and the sensing of host-derived cues, but its role in other pathosystems such as fungal–fungal interactions is less clear. We report the use of a gene disruption strategy to investigate the 1-like MAPK, 1 in the development of (formerly ) infection on the cultivated mushroom . 1 was isolated using a degenerate PCR-based approach and was shown to be present in a single copy by Southern blot analysis. Quantitative RT-PCR showed the transcript to be fivefold upregulated in cap lesions compared with pure culture. -mediated targeted disruption was used to delete a central portion of the 1 gene. The resulting mutants showed normal symptom development as assessed by mushroom cap assays, sporulation patterns were normal and there were no apparent changes in overall growth rates. Our results indicate that, unlike the situation in fungal–plant pathogens, the 1-like MAPK pathway is not required for virulence in the fungal–fungal interaction between the pathogen and host. This observation may be of wider significance in other fungal–fungal and/or fungal–invertebrate interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034439-0
2010-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1439.html?itemId=/content/journal/micro/10.1099/mic.0.034439-0&mimeType=html&fmt=ahah

References

  1. Amey, R. C., Athey-Pollard, A., Burns, C., Mills, P. R., Bailey, A. & Foster, G. D. ( 2002; ). PEG-mediated and Agrobacterium-mediated transformation in the mycopathogen Verticillium fungicola. Mycol Res 106, 4–11.[CrossRef]
    [Google Scholar]
  2. Amey, R. C., Mills, P. R., Bailey, A. & Foster, G. D. ( 2003; ). Investigating the role of a Verticillium fungicola beta-1,6-glucanase during infection of Agaricus bisporus using targeted gene disruption. Fungal Genet Biol 39, 264–275.[CrossRef]
    [Google Scholar]
  3. Amey, R. C., Athey-Pollard, A., Mills, P. R., Foster, G. D. & Bailey, A. M. ( 2007; ). Investigations into the taxonomy of the mushroom pathogen Verticillium fungicola and its relatives based on analysis of nitrate reductase and ITS sequences. Mikrobiologiia 76, 853–864.
    [Google Scholar]
  4. Bernardo, D., Cabo, A. P., Novaes-Ledieu, M. & Mendoza, C. G. ( 2004; ). Verticillium disease or “dry bubble” of cultivated mushrooms: the Agaricus bisporus lectin recognizes and binds the Verticillium fungicola cell wall glucogalactomannan. Can J Microbiol 50, 729–735.[CrossRef]
    [Google Scholar]
  5. Bonnen, A. M. & Hopkins, C. ( 1997; ). Fungicide resistance and population variation in Verticillium fungicola, a pathogen of the button mushroom Agaricus bisporus. Mycol Res 101, 89–96.[CrossRef]
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Calonje, M., García Mendoza, C., Galan, B. & Novaes-Ledieu, M. ( 1997; ). Enzymic activity of the mycoparasite Verticillium fungicola on Agaricus bisporus fruit body cell walls. Microbiology 143, 2999–3006.[CrossRef]
    [Google Scholar]
  8. Cho, Y., Cramer, R. A., Jr, Kim, K.-H., Davis, J., Mitchell, T. K., Figuli, P., Pryor, B. M., Lemasters, E. & Lawrence, C. B. ( 2007; ). The fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet Biol 44, 543–553.[CrossRef]
    [Google Scholar]
  9. Chrysayi-Tokousbalides, M., Kastanias, M. A., Phillippoussis, A. & Diamantopoulou, P. ( 2007; ). Selective fungitoxicity of famoxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Prot 26, 469–475.[CrossRef]
    [Google Scholar]
  10. Clarke, D. L., Woodlee, G. L., McClelland, C. M., Seymour, T. S. & Wickes, B. L. ( 2001; ). The Cryptococcus neoformans STE11 alpha gene is similar to other fungal mitogen-activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific. Mol Microbiol 40, 200–213.[CrossRef]
    [Google Scholar]
  11. Collopy, P. D., Largeteau-Mamoun, M. L., Romaine, C. P. & Royse, D. J. ( 2001; ). Molecular phylogenetic analyses of Verticillium fungicola and related species causing dry bubble disease of the cultivated button mushroom, Agaricus bisporus. Phytopathology 91, 905–912.[CrossRef]
    [Google Scholar]
  12. Dickman, M. B. & Yarden, O. ( 1999; ). Ser/Thr kinases and phosphatases in filamentous fungi. Fungal Genet Biol 26, 99–117.[CrossRef]
    [Google Scholar]
  13. Di Pietro, A., Garcia-Maceira, F. I., Meglecz, E. & Roncero, M. I. G. ( 2001; ). A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39, 1140–1152.[CrossRef]
    [Google Scholar]
  14. Dragt, J. W., Geels, F. P., De Bruijn, W. C. & van Griensven, L. J. L. D. ( 1996; ). Intracellular infection of the cultivated mushroom Agaricus bisporus by the mycoparasite Verticillium fungicola var. fungicola. Mycol Res 100, 1082–1086.[CrossRef]
    [Google Scholar]
  15. Gené, J., Verdejo-Lucas, S., Stchigel, A. M., Sorribas, F. J. & Guarro, J. ( 2005; ). Microbial parasites associated with Tylenchulus semipenetrans in citrus orchards of Catalonia, Spain. Biocontrol Sci Technol 15, 721–731.[CrossRef]
    [Google Scholar]
  16. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. ( 2000; ). pGreen: a versatile and flexible binary vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42, 819–832.[CrossRef]
    [Google Scholar]
  17. Hooykaas, P. J. J., Roobol, C. & Schilperoort, R. A. ( 1979; ). Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. J Gen Microbiol 110, 99–109.[CrossRef]
    [Google Scholar]
  18. Johnson, Z. E. ( 2006; ). Non-ribosomal peptide synthases of Mycosphaerella graminicola. PhD thesis, University of Bristol, UK.
  19. Jun Kim, J., Goettel, M. S. & Gillespie, D. R. ( 2007; ). Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus Sphaerotheca fuligina. Biol Control 40, 327–332.[CrossRef]
    [Google Scholar]
  20. Keon, J. & Hargreaves, J. ( 1998; ). Isolation and heterologous expression of a gene encoding 4-hydroxyphenylpyruvate dioxygenase from the wheat leaf-spot pathogen, Mycosphaerella graminicola. FEMS Microbiol Lett 161, 337–343.[CrossRef]
    [Google Scholar]
  21. Kültz, D. ( 1998; ). Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. J Mol Evol 46, 571–588.[CrossRef]
    [Google Scholar]
  22. Kumar, S., Tamura, D. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  23. Lev, S. & Horwitz, B. A. ( 2003; ). A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. Plant Cell 15, 835–844.[CrossRef]
    [Google Scholar]
  24. Lev, S., Sharon, A., Hadar, R., Ma, H. & Horowitz, B. A. ( 1999; ). A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc Natl Acad Sci U S A 96, 13542–13547.[CrossRef]
    [Google Scholar]
  25. Mayorga, M. E. & Gold, S. E. ( 2001; ). The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence. Mol Microbiol 41, 1365–1379.[CrossRef]
    [Google Scholar]
  26. Mendoza-Mendoza, A., Pozo, M. J., Grzegorski, D., Martinez, P., Garcia, J. M., Olmedo-Monfil, V., Cortes, C., Kenerley, C. & Herrera-Estrella, A. ( 2003; ). Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100, 15965–15970.[CrossRef]
    [Google Scholar]
  27. Mey, G., Oesler, B., Lebrun, M.-H. & Tudzynski, P. ( 2002; ). The biotrophic, non-appressorium-forming grass pathogen Claviceps purpurea needs a Fus3/Pmk1 homologous mitogen-activated protein kinase for colonization of rye ovarian tissue. Mol Plant Microbe Interact 15, 303–312.[CrossRef]
    [Google Scholar]
  28. Mills, P., Thomas, J., Sergeant, M., Costa, A., Collopy, P. D., Bailey, A., Foster, G. & Challen, M. ( 2008; ). Interactions between Agaricus bisporus and the pathogen Verticillium fungicola. In Stress in Yeasts and Filamentous Fungi, pp. 1–17. Edited by S. V. Avery, M. Stratford & P. Van West. London, UK: Academic Press.
  29. Mukherjee, P. K., Latha, J., Hadar, R. & Horwitz, B. A. ( 2003; ). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in bio-control properties and repression of conidiation in the dark. Eukaryot Cell 2, 446–455.[CrossRef]
    [Google Scholar]
  30. Muller, P., Aichinger, C., Feldbrugge, M. & Kahmann, R. ( 1999; ). The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol Microbiol 34, 1007–1017.[CrossRef]
    [Google Scholar]
  31. Nishida, E. & Gotoh, Y. ( 1993; ). The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18, 128–131.[CrossRef]
    [Google Scholar]
  32. Novaes-Ledieu, M. & Mendoza, C. G. ( 1981; ). The cell walls of Agaricus bisporus and Agaricus campestris fruiting body hyphae. Can J Microbiol 27, 779–787.[CrossRef]
    [Google Scholar]
  33. Ortoneda, M., Guarro, J., Madrid, M. P., Caracuel, Z., Roncero, M. I. G., Mayayo, E. & Di Pietro, A. ( 2004; ). Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun 72, 1760–1766.[CrossRef]
    [Google Scholar]
  34. Park, S. H., Zarrinpar, A. & Lim, W. A. ( 2003; ). Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064.[CrossRef]
    [Google Scholar]
  35. Park, S. M., Choi, E. S., Kim, M. J., Cha, B. J., Yang, M. S. & Kim, D. H. ( 2004; ). Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol 51, 1267–1277.[CrossRef]
    [Google Scholar]
  36. Rauyaree, P., Ospina-Giraldo, M. D., Kang, S., Bhat, R. G., Subbarao, K. V., Grant, S. J. & Dobinson, K. F. ( 2005; ). Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Curr Genet 48, 109–116.[CrossRef]
    [Google Scholar]
  37. Reithner, B., Schumacher, R., Stoppacher, N., Pucher, M., Brunner, K. & Zeilinger, S. ( 2007; ). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44, 1123–1133.[CrossRef]
    [Google Scholar]
  38. Ruiz-Roldan, M. C., Maier, F. J. & Schafer, W. ( 2001; ). PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley. Mol Plant Microbe Interact 14, 116–125.[CrossRef]
    [Google Scholar]
  39. Schaeffer, H. J. & Weber, M. J. ( 1999; ). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19, 2435–2444.
    [Google Scholar]
  40. Spencer, D. M. & Atkey, P. T. ( 1981; ). Parasitic effects of Verticillium lecanii on two rust fungi. Trans Br Mycol Soc 77, 535–542.[CrossRef]
    [Google Scholar]
  41. Takano, Y., Kikuchi, T., Kubo, Y., Hamer, J. E., Mise, K. & Furusawa, I. ( 2000; ). The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact 13, 374–383.[CrossRef]
    [Google Scholar]
  42. Viterbo, A., Harel, M., Horwitz, B. A., Chet, I. & Mukherjee, P. K. ( 2005; ). Trichoderma mitogen-activated protein kinase signalling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71, 6241–6246.[CrossRef]
    [Google Scholar]
  43. Xu, J. R. ( 2000; ). MAP kinases in fungal pathogens. Fungal Genet Biol 31, 137–152.[CrossRef]
    [Google Scholar]
  44. Xu, J. R. & Hamer, J. E. ( 1996; ). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10, 2696–2706.[CrossRef]
    [Google Scholar]
  45. Xu, J.-R., Staiger, C. J. & Hamer, J. E. ( 1998; ). Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci U S A 95, 12713–12718.[CrossRef]
    [Google Scholar]
  46. Zare, R. & Gams, W. ( 2001; ). A revision of Verticillium section Prostrata. VI. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73, 1–50.
    [Google Scholar]
  47. Zare, R. & Gams, W. ( 2008; ). A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycol Res 112, 811–824.[CrossRef]
    [Google Scholar]
  48. Zhao, X., Mehrabi, R. & Xu, J.-R. ( 2007; ). Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6, 1701–1714.[CrossRef]
    [Google Scholar]
  49. Zheng, L., Campbell, M., Murphy, J., Lam, S. & Xu, J.-R. ( 2000; ). The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 13, 724–732.[CrossRef]
    [Google Scholar]
  50. Zou, X., Nonogaki, H. & Welbaum, G. E. ( 2002; ). A gel diffusion assay for visualization and quantification of chitinase activity. Mol Biotechnol 22, 19–23.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034439-0
Loading
/content/journal/micro/10.1099/mic.0.034439-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error