1887

Abstract

The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Δ mutants do not survive , mutants are avirulent, and both and mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted , and demonstrated that Δ mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both and Δ mutants. Since the mutation of , required for the first step of isoleucine biosynthesis, did not suppress the Δ starvation-cidal defects in either species, the cidal phenotype was not due to -ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in than in , and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced Δ starvation viability, it increased Δ and Δ viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for Δ mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Δ and Δ viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the cidal phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034348-0
2010-03-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/929.html?itemId=/content/journal/micro/10.1099/mic.0.034348-0&mimeType=html&fmt=ahah

References

  1. Barclay, B. J. & Little, J. G. ( 1977; ). Selection of yeast auxotrophs by thymidylate starvation. J Bacteriol 132, 1036–1037.
    [Google Scholar]
  2. Boer, V. M., Amini, S. & Botstein, D. ( 2008; ). Influence of genotype and nutrition on survival and metabolismof starving yeast. Proc Natl Acad Sci U S A 105, 6930–6935.[CrossRef]
    [Google Scholar]
  3. Brauer, M. J., Huttenhower, C., Airoldi, E. M., Rosenstein,R., Matese, J. C., Gresham, D., Boer, V. M., Troyanskaya, O. G. & Botstein,D. ( 2008; ). Coordination of growth rate, cell cycle,stress response, and metabolic activity in yeast. Mol Biol Cell 19, 352–367.[CrossRef]
    [Google Scholar]
  4. Bulder, C. J. ( 1964; ). Induction of petitemutation and inhibition of synthesis of respiratory enzymes in various yeasts. Antonie Van Leeuwenhoek 30, 1–9.[CrossRef]
    [Google Scholar]
  5. Chipman, D., Barak, Z. & Schloss, J. V. ( 1998; ). Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthasesand acetohydroxyacid synthases. Biochim Biophys Acta 1385, 401–419.[CrossRef]
    [Google Scholar]
  6. Crispens, C. G. ( 1975; ). Section IV.Blood. In Handbook on the Laboratory Mouse, pp. 93–123. Springfield,IL: Charles C. Thomas.
  7. Culbertson, M. R. & Henry, S. A. ( 1975; ). Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics 80, 23–40.
    [Google Scholar]
  8. Cynober, L. A. ( 2002; ). Plasma aminoacid levels with a note on membrane transport: characteristics, regulation,and metabolic significance. Nutrition 18, 761–766.[CrossRef]
    [Google Scholar]
  9. Daniel, J., Dondon, L. & Danchin, A. ( 1983; ). 2-Ketobutyrate: a putative alarmone of Escherichia coli. Mol Gen Genet 190, 452–458.[CrossRef]
    [Google Scholar]
  10. Daniel, J., Joseph, E. & Danchin, A. ( 1984; ). Role of 2-ketobutyrate as an alarmone in E. coli K12:inhibition of adenylate cyclase activity mediated by the phosphoenolpyruvate : glycosephosphotransferase transport system. Mol Gen Genet 193, 467–472.[CrossRef]
    [Google Scholar]
  11. Divol, B. & Lonvaud-Funel, A. ( 2005; ). Evidence for viable but nonculturable yeasts in botrytis-affected wine. J Appl Microbiol 99, 85–93.[CrossRef]
    [Google Scholar]
  12. Epelbaum, S., Chipman, D. M. & Barak, Z. ( 1996; ). Metabolic effects of inhibitors of two enzymes of the branched-chainamino acid pathway in Salmonella typhimurium. J Bacteriol 178, 1187–1196.
    [Google Scholar]
  13. Fradin, C., Kretschmar, M., Nichterlein, T., Gaillardin, C.,d'Enfert, C. & Hube, B. ( 2003; ). Stage-specificgene expression of Candida albicans in human blood. MolMicrobiol 47, 1523–1543.
    [Google Scholar]
  14. Fradin, C., De Groot, P., MacCallum, D., Schaller, M., Klis,F., Odds, F. C. & Hube, B. ( 2005; ). Granulocytesgovern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56, 397–415.[CrossRef]
    [Google Scholar]
  15. Gillum, A. M., Tsay, E. Y. & Kirsch, D. R. ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphatedecarboxylase by complementation of S. cerevisiae ura3 and E.coli pyrF mutations. Mol Gen Genet 198, 179–182.[CrossRef]
    [Google Scholar]
  16. Goldstein, A. L. & McCusker, J. H. ( 1999; ). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553.[CrossRef]
    [Google Scholar]
  17. Goldstein, A. L. & McCusker, J. H. ( 2001; ). Development of Saccharomyces cerevisiae as a model pathogen.A system for the genetic identification of gene products required for survivalin the mammalian host environment. Genetics 159, 499–513.
    [Google Scholar]
  18. Gray, J. V., Petsko, G. A., Johnston, G. C., Ringe, D., Singer,R. A. & Werner-Washburne, M. ( 2004; ). “Sleepingbeauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68, 187–206.[CrossRef]
    [Google Scholar]
  19. Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann,J. H. ( 1996; ). A new efficient gene disruption cassettefor repeated use in budding yeast. Nucleic Acids Res 24, 2519–2524.[CrossRef]
    [Google Scholar]
  20. Henry, S. A., Donahue, T. F. & Culbertson, M. R. ( 1975; ). Selection of spontaneous mutants by inositol starvationin yeast. Mol Gen Genet 143, 5–11.[CrossRef]
    [Google Scholar]
  21. Hoffman, C. S. & Winston, F. ( 1987; ). A ten-minute DNA preparation from yeast efficiently releases autonomousplasmids for transformation of Escherichia coli. Gene 57, 267–272.[CrossRef]
    [Google Scholar]
  22. Ito-Harashima, S., Hartzog, P. E., Sinha, H. & McCusker,J. H. ( 2002; ). The tRNA-Tyr gene family of Saccharomycescerevisiae: agents of phenotypic variation and position effects on mutationfrequency. Genetics 161, 1395–1410.
    [Google Scholar]
  23. Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C.R. & Barer, M. R. ( 1998; ). Viability and activityin readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73, 169–187.[CrossRef]
    [Google Scholar]
  24. Kingsbury, J. M. & McCusker, J. H. ( 2008; ). Threonine biosynthetic genes are essential in Cryptococcus neoformans. Microbiology 154, 2767–2775.[CrossRef]
    [Google Scholar]
  25. Kingsbury, J. M., Yang, Z., Ganous, T. M., Cox, G. M. &McCusker, J. H. ( 2004a; ). Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required forsurvival at 3 °C and in vivo. Microbiology 150, 1547–1558.[CrossRef]
    [Google Scholar]
  26. Kingsbury, J. M., Yang, Z., Ganous, T. M., Cox, G. M. &McCusker, J. H. ( 2004b; ). A novel chimeric spermidinesynthase-saccharopine dehydrogenase (SPE3-LYS9)gene in the human pathogen Cryptococcus neoformans. EukaryotCell 3, 752–763.
    [Google Scholar]
  27. Kingsbury, J. M., Goldstein, A. L. & McCusker, J. H. ( 2006; ). Role of nitrogen and carbon transport, regulation,and metabolism genes for Saccharomyces cerevisiae survival invivo. Eukaryot Cell 5, 816–824.[CrossRef]
    [Google Scholar]
  28. Kirsch, D. R. & Whitney, R. R. ( 1991; ). Pathogenicity of Candida albicans auxotrophic mutants in experimentalinfections. Infect Immun 59, 3297–3300.
    [Google Scholar]
  29. Landstein, D., Chipman, D. M., Arad, S. M. & Barak, Z. ( 1990; ). Acetohydroxy acid synthase activity in Chlorellaemersonii under auto- and heterotrophic growth conditions. Plant Physiol 94, 614–620.[CrossRef]
    [Google Scholar]
  30. LaRossa, R. A. & Van Dyk, T. K. ( 1987; ). Metabolic mayhem caused by 2-ketoacid imbalances. Bioessays 7, 125–130.[CrossRef]
    [Google Scholar]
  31. LaRossa, R. A., Van Dyk, T. K. & Smulski, D. R. ( 1987; ). Toxic accumulation of α-ketobutyratecaused by inhibition of the branched-chain amino acid biosynthetic enzymeacetolactate synthase in Salmonella typhimurium. J Bacteriol 169, 1372–1378.
    [Google Scholar]
  32. Liebmann, B., Muhleisen, T. W., Muller, M., Hecht, M., Weidner,G., Braun, A., Brock, M. & Brakhage, A. A. ( 2004; ). Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dosemouse infection model of invasive aspergillosis. Arch Microbiol 181, 378–383.[CrossRef]
    [Google Scholar]
  33. Lorenz, M. C., Bender, J. A. & Fink, G. R. ( 2004; ). Transcriptional response of Candida albicans uponinternalization by macrophages. Eukaryot Cell 3, 1076–1087.[CrossRef]
    [Google Scholar]
  34. McCusker, J. H., Clemons, K. V., Stevens, D. A. & Davis,R. W. ( 1994; ). Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136, 1261–1269.
    [Google Scholar]
  35. Mills, D. A., Johannsen, E. A. & Cocolin, L. ( 2002; ). Yeast diversity and persistence in Botrytis-affectedwine fermentations. Appl Environ Microbiol 68, 4884–4893.[CrossRef]
    [Google Scholar]
  36. Nazi, I., Scott, A., Sham, A., Rossi, L., Williamson, P. R.,Kronstad, J. W. & Wright, G. D. ( 2007; ). Role ofhomoserine transacetylase as a new target for antifungal agents. Antimicrob Agents Chemother 51, 1731–1736.[CrossRef]
    [Google Scholar]
  37. Nicholas, R. O., Berry, V., Hunter, P. A. & Kelly, J. A. ( 1999; ). The antifungal activity of mupirocin. J Antimicrob Chemother 43, 579–582.[CrossRef]
    [Google Scholar]
  38. Noble, S. M. & Johnson, A. D. ( 2005; ). Strains and strategies for large-scale gene deletion studies of the diploidhuman fungal pathogen Candida albicans. Eukaryot Cell 4, 298–309.[CrossRef]
    [Google Scholar]
  39. Oliver, J. D. ( 2005; ). The viable butnonculturable state in bacteria. J Microbiol 43, (special issue), 93–100.
    [Google Scholar]
  40. Pascon, R. C., Ganous, T. M., Kingsbury, J. M., Cox, G. M. &McCusker, J. H. ( 2004; ). Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence. Microbiology 150, 3013–3023.[CrossRef]
    [Google Scholar]
  41. Reuss, O., Vik, A., Kolter, R. & Morschhauser, J. ( 2004; ). The SAT1 flipper, an optimized tool forgene disruption in Candida albicans. Gene 341, 119–127.[CrossRef]
    [Google Scholar]
  42. Rhodes, D., Hogan, A. L., Deal, L., Jamieson, G. C. & Haworth,P. ( 1987; ). Amino acid metabolism of Lemna minor L.: II. Responses to chlorsulfuron. Plant Physiol 84, 775–780.[CrossRef]
    [Google Scholar]
  43. Saldanha, A. J., Brauer, M. J. & Botstein, D. ( 2004; ). Nutritional homeostasis in batch and steady-state cultureof yeast. Mol Biol Cell 15, 4089–4104.[CrossRef]
    [Google Scholar]
  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold SpringHarbor, NY: Cold Spring Harbor Laboratory.
  45. Schneper, L., Duvel, K. & Broach, J. R. ( 2004; ). Sense and sensibility: nutritional response and signal integrationin yeast. Curr Opin Microbiol 7, 624–630.[CrossRef]
    [Google Scholar]
  46. Shaner, D. L. & Singh, B. K. ( 1993; ). Phytotoxicity of acetohydroxyacid synthase inhibitors is not due to accumulationof 2-ketobutyrate and/or 2-aminobutyrate. Plant Physiol 103, 1221–1226.
    [Google Scholar]
  47. Sherman, F., Fink, G. R. & Lawrence, C. W. ( 1974; ). Methods in Yeast Genetics. Cold Spring Harbor,NY: Cold Spring Harbor Laboratory.
  48. Tkacz, J. S. & DiDomenico, B. ( 2001; ). Antifungals: what's in the pipeline. Curr Opin Microbiol 4, 540–545.[CrossRef]
    [Google Scholar]
  49. Unger, M. W. & Hartwell, L. H. ( 1976; ). Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA. Proc Natl Acad Sci U S A 73, 1664–1668.[CrossRef]
    [Google Scholar]
  50. Van Dyk, T. K., Smulski, D. R. & Chang, Y. Y. ( 1987; ). Pleiotropic effects of poxA regulatory mutationsof Escherichia coli and Salmonella typhimurium, mutationsconferring sulfometuron methyl and α-ketobutyrate hypersensitivity. J Bacteriol 169, 4540–4546.
    [Google Scholar]
  51. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. ( 1994; ). New heterologous modules for classical or PCR-basedgene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808.[CrossRef]
    [Google Scholar]
  52. Warburg, O. ( 1956; ). On the origin ofcancer cells. Science 123, 309–314.[CrossRef]
    [Google Scholar]
  53. Whitcomb, C. E. ( 1999; ). An introductionto ALS-inhibiting herbicides. Toxicol Ind Health 15, 231–239.[CrossRef]
    [Google Scholar]
  54. Yang, Z., Pascon, R. C., Alspaugh, A., Cox, G. M. & McCusker,J. H. ( 2002; ). Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiology 148, 2617–2625.
    [Google Scholar]
  55. Zaman, S., Lippman, S. I., Zhao, X. & Broach, J. R. ( 2008; ). How Saccharomyces responds to nutrients. Annu Rev Genet 42, 27–81.[CrossRef]
    [Google Scholar]
  56. Ziegelbauer, K. ( 1998; ). Decreased accumulationor increased isoleucyl-tRNA synthetase activity confers resistance to thecyclic β-amino acid BAY 10–8888 in Candida albicans and Candida tropicalis. Antimicrob Agents Chemother 42, 1581–1586.
    [Google Scholar]
  57. Ziegelbauer, K., Babczinski, P. & Schonfeld, W. ( 1998; ). Molecular mode of action of the antifungal β-amino acid BAY 10–8888. Antimicrob Agents Chemother 42, 2197–2205.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034348-0
Loading
/content/journal/micro/10.1099/mic.0.034348-0
Loading

Data & Media loading...

Supplements

[PDF](59 KB)

PDF

[PDF](142 KB)

PDF

[PDF](118 KB)

PDF

Primers used in this study [PDF](22 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error