1887

Abstract

strain T-27 is an orange-coloured, Gram-negative, facultatively aerobic, polyphosphate-accumulating bacterium belonging to a recently proposed phylum, . We purified its pigments and identified them as carotenoids and their glycoside derivatives using spectral data. The major carotenoid was (2,2′)-oscillol 2,2′-di-(--rhamnoside), and the minor carotenoids were (2)-deoxyoscillol 2-(--rhamnoside) and didemethylspirilloxanthin. Deoxyoscillol2-rhamnoside is a novel carotenoid. Oscillol 2,2′-diglycosides have hitherto only been reported in a limited number of cyanobacteria, and this is believed to be the first finding of such carotenoids in another bacterial phylum. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence, we propose a biosynthetic pathway for the carotenoids and the corresponding genes and enzymes. We propose the involvement of geranylgeranyl pyrophosphate synthase (CrtE), phytoene synthase (CrtB) and phytoene desaturase (CrtI) for lycopene synthesis; and of carotenoid1,2-hydratase (CruF) and carotenoid 2--rhamnosyltransferase (CruG) for oscillol 2,2′-dirhamnoside synthesis. Further, isopentenyl pyrophosphate could be synthesized by a non-mevalonate pathway (DXP pathway).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034249-0
2010-03-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/757.html?itemId=/content/journal/micro/10.1099/mic.0.034249-0&mimeType=html&fmt=ahah

References

  1. Britton G., Liaaen-Jensen S., Pfander H.. 2004; Carotenoids, Handbook Basel, Switzerland: Birkhäuser Verlag;
  2. Eisenreich W., Bacher A., Arigoni D., Rohdich F.. 2004; Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci61:1401–1426
    [Google Scholar]
  3. Foss P., Skulberg O. M., Kilaas L., Liaaen-Jensen S.. 1986; The carbohydrate moieties bound to the carotenoids myxol and oscillol and their chemosystematic applications. Phytochemistry25:1127–1132
    [Google Scholar]
  4. Frigaard N.-U., Maresca J. A., Yunker C. E., Jones A. D., Bryant D. A.. 2004; Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol186:5210–5220
    [Google Scholar]
  5. Graham J. E., Bryant D. A.. 2009; The biosynthetic pathway for myxol-2′ fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol191:3292–3300
    [Google Scholar]
  6. Herbert R. A., Gall A., Maoka T., Cogdell R. J., Robert B., Takaichi S., Schwabe S.. 2008; Phototrophic purple sulfur bacteria as heat engines in the South Andros Black Hole. Photosynth Res95:261–268
    [Google Scholar]
  7. Hirschberg J., Chamovitz D.. 1994; Carotenoids in cyanobacteria. In The Molecular Biology of Cyanobacteria pp559–579 Edited by Bryant D. A.. Dordrecht, Netherlands: Kluwer Academic Publishers;
  8. Jansen R., Nowak A., Kunze B., Reichenbach H., Höfle G.. 1995; Four new carotenoids from Polyangium fumosum (Myxobacteria): 3,3′,4,4′-tetradehydro-1,1′,2,2′-tetrahydro-1,1′-dihydroxy- ψ, ψ-carotene (di- O-demethylspirilloxanthin), its β-glucoside and glucoside fatty acid esters. Liebigs Ann 1995;873–876
    [Google Scholar]
  9. Manh H. D., Matsuo Y., Katsuta A., Matsuda S., Shizuri Y., Kasai H.. 2008; Robiginitalea myxolifaciens sp. nov., a novel myxol-producing bacterium isolated from marine sediment, and emended description of the genus Robiginitalea. Int J Syst Evol Microbiol58:1660–1664
    [Google Scholar]
  10. Maresca J. A., Graham J. E., Bryant D. A.. 2008; The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria. Photosynth Res97:121–140
    [Google Scholar]
  11. Mochimaru M., Masukawa H., Maoka T., Mohamed H. E., Vermaas W. F. J., Takaichi S.. 2008; Substrate specificities and availability of fucosyltransferase and β-carotene hydroxylase for myxol 2′-fucoside synthesis in Anabaena sp. PCC 7120, compared with Synechocystis sp. PCC 6803. J Bacteriol190:6726–6733
    [Google Scholar]
  12. Rählert N., Fraser P. D., Sandmann G.. 2009; A crtA-related gene from Flavobacterium P99-3 encodes a novel carotenoid 2-hydroxylase involved in myxol biosynthesis. FEBS Lett583:1605–1610
    [Google Scholar]
  13. Shindo K., Kikuta K., Suzuki A., Katsuta A., Kasai H., Misawa N., Takaichi S.. 2007; (3 R)-Saproxanthin, (3 R,2′ S)-myxol, and (3 R,3′ R)-zeaxanthin from three novel marine bacteria ( Flavobacteriaceae), and their antioxidant activities. Appl Microbiol Biotechnol74:1350–1357
    [Google Scholar]
  14. Sun Z., Shen S., Wang H., Hu Y., Jiao J., Ma T., Tian B., Hua Y.. 2009; A novel carotenoid 1,2-hydratase (CruF) from two species of the non-photosynthetic bacterium Deinococcus. Microbiology155:2775–2783
    [Google Scholar]
  15. Takaichi S.. 2009; Distribution and biosynthesis of carotenoids. In The Purple Phototrophic Bacteria, Advances in Photosynthesis and Respirationvol. 28 pp97–117 Edited by Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T.. Amsterdam: Springer;
  16. Takaichi S., Mochimaru M.. 2007; Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell Mol Life Sci64:2607–2619
    [Google Scholar]
  17. Takaichi S., Mochimaru M.. 2010; Carotenoids, their diversity and carotenogenesis in cyanobacteria. In Handbook of Cyanobacteria: Biochemistry, Biotechnology and Applications Edited by Gault P. M., Marler H. J.. New York: Nova Science Publishers; in press;
  18. Takaichi S., Shimada K.. 1992; Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol213:374–385
    [Google Scholar]
  19. Takaichi S., Mochimaru M., Maoka T., Katoh H.. 2005; Myxol and 4-ketomyxol 2′-fucosides, not rhamnosides, from Anabaena sp. PCC 7120 and Nostoc punctiforme PCC 73102, and proposal for the biosynthetic pathway of carotenoids. Plant Cell Physiol46:497–504
    [Google Scholar]
  20. Takaichi S., Mochimaru M., Maoka T.. 2006; Presence of free myxol and 4-hydroxymyxol and absence of myxol glycosides in Anabaena variabilis ATCC 29413, and proposal of a biosynthetic pathway of carotenoids. Plant Cell Physiol47:211–216
    [Google Scholar]
  21. Teramoto M., Rählert N., Misawa N., Sandmann G.. 2004; 1-Hydroxy monocyclic carotenoid, 3,4-dehydrogenase from a marine bacterium that produces myxol. FEBS Lett570:184–188
    [Google Scholar]
  22. Tian B., Sun Z., Xu Z., Shen S., Wang H., Hua Y.. 2008; Carotenoid 3′,4′-desaturase is involved in carotenoid biosynthesis in the radioresistant bacterium Deinococcus radiodurans. Microbiology154:3697–3706
    [Google Scholar]
  23. Tsuchiya T., Takaichi S., Misawa N., Maoka T., Miyashita H., Mimuro M.. 2005; The cyanobacteria Gloeobacter violaceus PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Lett579:2125–2129
    [Google Scholar]
  24. Yokoyama A., Miki W.. 1995; Isolation of myxol from a marine bacterium Flavobacterium sp. associated with a marine sponge. Fish Sci61:684–686
    [Google Scholar]
  25. Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., Nakamura K.. 2003; Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol53:1155–1163
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034249-0
Loading
/content/journal/micro/10.1099/mic.0.034249-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error