1887

Abstract

Sigma factors direct specific binding of the bacterial RNA polymerase to the promoter. Here we present the elucidation of the regulon in . A sequence-based regulon prediction of -dependent promoters revealed an operon encoding a mannose phosphotransferase system (PTS) as the best candidate for -mediated control. A () mutant derivative did not grow on mannose, confirming this prediction. Additional mutational analyses established the presence of one functional mannose PTS in , the expression of which is controlled by in concert with the -activator ManR. Genome-wide transcription comparison of the wild-type and the -deletion strain revealed nine upregulated genes in the wild-type, including the genes of the mannose PTS, and 21 upregulated genes in the mutant. The -controlled mannose PTS was shown also to transport glucose in wild-type cells, and its presence causes a lag phase when cultures are transferred from glucose- to galactose-containing media. The mannose PTS appeared to drain phosphoenolpyruvate (PEP) pools in resting cells, since no PEP could be detected in resting wild-type cells, while mannose PTS mutant derivatives contained 1–3 μM PEP (mg protein). Our data provide new insight into the role of in and possibly other Gram-positive bacteria in the control of expression of an important glucose transporter that contributes to glucose-mediated catabolite control via modulation of the PEP pool.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034165-0
2010-03-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/695.html?itemId=/content/journal/micro/10.1099/mic.0.034165-0&mimeType=html&fmt=ahah

References

  1. Ahrne S., Nobaek S., Jeppsson B., Adlerberth I., Wold A. E., Molin G.. 1998; The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol85:88–94
    [Google Scholar]
  2. Ali N. O., Bignon J., Rapoport G., Debarbouille M.. 2001; Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J Bacteriol183:2497–2504
    [Google Scholar]
  3. Bailey T. L., Elkan C.. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol2:28–36
    [Google Scholar]
  4. Bailey T. L., Gribskov M.. 1998; Combining evidence using p-values: application to sequence homology searches. Bioinformatics14:48–54
    [Google Scholar]
  5. Barrios H., Valderrama B., Morett E.. 1999; Compilation and analysis of σ54-dependent promoter sequences. Nucleic Acids Res27:4305–4313
    [Google Scholar]
  6. Bhattacharya M., Fuhrman L., Ingram A., Nickerson K. W., Conway T.. 1995; Single-run separation and detection of multiple metabolic intermediates by anion-exchange high-performance liquid chromatography and application to cell pool extracts prepared from Escherichia coli. Anal Biochem232:98–106
    [Google Scholar]
  7. Boogaard V. D.. 2002; Catabolite control of sugar metabolism in Streptococcus thermophilus. PhD thesis Wageningen University; Wageningen, The Netherlands:
  8. Bron P. A.. 2004; The molecular response of Lactobacillus plantarum to intestinal passage and conditions PhD thesis Wageningen University; Wageningen, The Netherlands:
  9. Buck M.. 1986; Deletion analysis of the Klebsiella pneumoniae nitrogenase promoter: importance of spacing between conserved sequences around positions −12 and −24 for activation by the nifA and ntrC ( glnG) products. J Bacteriol166:545–551
    [Google Scholar]
  10. Buck M., Miller S., Drummond M., Dixon R.. 1986; Upstream activator sequences are present in the promoters of nitrogen fixation genes. Nature320:374–377
    [Google Scholar]
  11. Buck M., Gallegos M. T., Studholme D. J., Guo Y., Gralla J. D.. 2000; The bacterial enhancer-dependent σ54 ( σN) transcription factor. J Bacteriol182:4129–4136
    [Google Scholar]
  12. Chaillou S., Postma P. W., Pouwels P. H.. 2001; Contribution of the phosphoenolpyruvate : mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus. Microbiology147:671–679
    [Google Scholar]
  13. Dalet K., Briand C., Cenatiempo Y., Hechard Y.. 2000; The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol41:441–443
    [Google Scholar]
  14. Dalet K., Cenatiempo Y., Cossart P., Hechard Y.. 2001; A σ54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology147:3263–3269
    [Google Scholar]
  15. De Man J. D., Rogosa M., Sharpe M. E.. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol23:130–135
    [Google Scholar]
  16. de Vries M. C., Vaughan E. E., Kleerebezem M., De Vos W. M.. 2006; Lactobacillus plantarum – survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J16:1018–1028
    [Google Scholar]
  17. Debarbouille M., Martin-Verstraete I., Kunst F., Rapoport G.. 1991; The Bacillus subtilis sigL gene encodes an equivalent of σ54 from Gram-negative bacteria. Proc Natl Acad Sci U S A88:9092–9096
    [Google Scholar]
  18. Debarbouille M., Gardan R., Arnaud M., Rapoport G.. 1999; Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol181:2059–2066
    [Google Scholar]
  19. Diep D. B., Skaugen M., Salehian Z., Holo H., Nes I. F.. 2007; Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A104:2384–2389
    [Google Scholar]
  20. Ferain T., Garmyn D., Bernard N., Hols P., Delcour J.. 1994; Lactobacillus plantarum ldhL gene: overexpression and deletion. J Bacteriol176:596–601
    [Google Scholar]
  21. Finn R. D., Mistry J., Schuster-Bockler B., Griffiths-Jones S., Hollich V., Lassmann T., Moxon S., Marshall M., Khanna A.. other authors 2006; Pfam: clans, web tools and services. Nucleic Acids Res34:D247–D251
    [Google Scholar]
  22. Foucaud C., Poolman B.. 1992; Lactose transport system of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport. J Biol Chem267:22087–22094
    [Google Scholar]
  23. Francke C., Kerkhoven R., Wels M., Siezen R. J.. 2008; A generic approach to identify transcription factor-specific operator motifs; inferences for LacI-family mediated regulation in Lactobacillus plantarum WCFS1. BMC Genomics9:145
    [Google Scholar]
  24. Garcia E., Bancroft S., Rhee S. G., Kustu S.. 1977; The product of a newly identified gene, gInF, is required for synthesis of glutamine synthetase in Salmonella. Proc Natl Acad Sci U S A74:1662–1666
    [Google Scholar]
  25. Gardan R., Rapoport G., Debarbouille M.. 1997; Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol Microbiol24:825–837
    [Google Scholar]
  26. Gosalbes M. J., Monedero V., Alpert C. A., Perez-Martinez G.. 1997; Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett148:83–89
    [Google Scholar]
  27. Grenier F. C., Waygood E. B., Saier M. H. Jr. 1985; Bacterial phosphotransferase system: regulation of the glucose and mannose enzymes II by sulfhydryl oxidation. Biochemistry24:4872–4876
    [Google Scholar]
  28. Gunnewijk M. G., Poolman B.. 2000; HPr(His∼P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus. J Biol Chem275:34080–34085
    [Google Scholar]
  29. Hechard Y., Pelletier C., Cenatiempo Y., Frere J.. 2001; Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology147:1575–1580
    [Google Scholar]
  30. Josson K., Scheirlinck T., Michiels F., Platteeuw C., Stanssens P., Joos H., Dhaese P., Zabeau M., Mahillon J.. 1989; Characterization of a Gram-positive broad-host-range plasmid isolated from Lactobacillus hilgardii. Plasmid21:9–20
    [Google Scholar]
  31. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M.. other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A100:1990–1995
    [Google Scholar]
  32. Knol J., Veenhoff L., Liang W. J., Henderson P. J., Leblanc G., Poolman B.. 1996; Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus. J Biol Chem271:15358–15366
    [Google Scholar]
  33. Lambert J. M., Bongers R. S., Kleerebezem M.. 2007; Cre- lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol73:1126–1135
    [Google Scholar]
  34. Merrick M. J.. 1993; In a class of its own – the RNA polymerase sigma factor σ54 ( σN. Mol Microbiol10:903–909
    [Google Scholar]
  35. Merrick M. J., Gibbins J. R.. 1985; The nucleotide sequence of the nitrogen-regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved features in bacterial RNA polymerase sigma factors. Nucleic Acids Res13:7607–7620
    [Google Scholar]
  36. Molenaar D., Bringel F., Schuren F. H., de Vos W. M., Siezen R. J., Kleerebezem M.. 2005; Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol187:6119–6127
    [Google Scholar]
  37. Morett E., Buck M.. 1989; In vivo studies on the interaction of RNA polymerase- σ54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex. J Mol Biol210:65–77
    [Google Scholar]
  38. Neves A. R., Ramos A., Costa H., van Swam I. I., Hugenholtz J., Kleerebezem M., de Vos W., Santos H.. 2002; Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl Environ Microbiol68:6332–6342
    [Google Scholar]
  39. Pieterse B., Jellema R. H., van der Werf M. J.. 2005; Quenching of microbial samples for increased reliability of microarray data. J Microbiol Methods64:207–216
    [Google Scholar]
  40. Poolman B., Smid E. J., Veldkamp H., Konings W. N.. 1987; Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J Bacteriol169:1460–1468
    [Google Scholar]
  41. Poolman B., Knol J., Mollet B., Nieuwenhuis B., Sulter G.. 1995; Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Proc Natl Acad Sci U S A92:778–782
    [Google Scholar]
  42. Ramnath M., Arous S., Gravesen A., Hastings J. W., Hechard Y.. 2004; Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology150:2663–2668
    [Google Scholar]
  43. Reitzer L., Schneider B. L.. 2001; Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev65:422–444
    [Google Scholar]
  44. Robichon D., Gouin E., Debarbouille M., Cossart P., Cenatiempo Y., Hechard Y.. 1997; The rpoN ( σ54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J Bacteriol179:7591–7594
    [Google Scholar]
  45. Saier M. H. Jr, Reizer J.. 1992; Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate : sugar phosphotransferase system. J Bacteriol174:1433–1438
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  47. Sasse-Dwight S., Gralla J. D.. 1988; Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc Natl Acad Sci U S A85:8934–8938
    [Google Scholar]
  48. Schujman G. E., Guerin M., Buschiazzo A., Schaeffer F., Llarrull L. I., Reh G., Vila A. J., Alzari P. M., de Mendoza D.. 2006; Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J25:4074–4083
    [Google Scholar]
  49. Smyth G.. 2005; Statistical issues in microarray data analysis. In Functional Genomics: Methods and Protocols, pp111–136 Edited by Braunstein M. J., Khodursky A. B. Totowa: Humana Press;
  50. Stevens M.. 2008; Transcriptome response of Lactobacillus plantarum to global regulator deficiency, stress and other enviromental conditions PhD thesis Wageningen University; Wageningen, The Netherlands:
  51. Stevens M. J., Wiersma A., de Vos W. M., Kuipers O. P., Smid E. J., Molenaar D., Kleerebezem M.. 2008; Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis. Appl Environ Microbiol74:4776–4778
    [Google Scholar]
  52. Studholme D. J., Buck M.. 2000; The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol Lett186:1–9
    [Google Scholar]
  53. Studholme D. J., Dixon R.. 2003; Domain architectures of σ54-dependent transcriptional activators. J Bacteriol185:1757–1767
    [Google Scholar]
  54. Teusink B., van Enckevort F. H., Francke C., Wiersma A., Wegkamp A., Smid E. J., Siezen R. J.. 2005; In silico reconstruction of the metabolic pathways of Lactobacillus plantarum: comparing predictions of nutrient requirements with those from growth experiments. Appl Environ Microbiol71:7253–7262
    [Google Scholar]
  55. Vadeboncoeur C., Pelletier M.. 1997; The phosphoenolpyruvate : sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev19:187–207
    [Google Scholar]
  56. Vadyvaloo V., Snoep J. L., Hastings J. W., Rautenbach M.. 2004; Physiological implications of class IIa bacteriocin resistance in Listeria monocytogenes strains. Microbiology150:335–340
    [Google Scholar]
  57. Wang L., Gralla J. D.. 1998; Multiple in vivo roles for the −12-region elements of σ54 promoters. J Bacteriol180:5626–5631
    [Google Scholar]
  58. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W.. 1989; Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res17:3469–3478
    [Google Scholar]
  59. Yebra M. J., Viana R., Monedero V., Deutscher J., Perez-Martinez G.. 2004; An esterase gene from Lactobacillus casei cotranscribed with genes encoding a phosphoenolpyruvate : sugar phosphotransferase system and regulated by a LevR-like activator and σ54 factor. J Mol Microbiol Biotechnol8:117–128
    [Google Scholar]
  60. Zuniga M., Comas I., Linaje R., Monedero V., Yebra M. J., Esteban C. D., Deutscher J., Perez-Martinez G., Gonzalez-Candelas F.. 2005; Horizontal gene transfer in the molecular evolution of mannose PTS transporters. Mol Biol Evol22:1673–1685
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034165-0
Loading
/content/journal/micro/10.1099/mic.0.034165-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error