1887

Abstract

Sigma factors direct specific binding of the bacterial RNA polymerase to the promoter. Here we present the elucidation of the regulon in . A sequence-based regulon prediction of -dependent promoters revealed an operon encoding a mannose phosphotransferase system (PTS) as the best candidate for -mediated control. A () mutant derivative did not grow on mannose, confirming this prediction. Additional mutational analyses established the presence of one functional mannose PTS in , the expression of which is controlled by in concert with the -activator ManR. Genome-wide transcription comparison of the wild-type and the -deletion strain revealed nine upregulated genes in the wild-type, including the genes of the mannose PTS, and 21 upregulated genes in the mutant. The -controlled mannose PTS was shown also to transport glucose in wild-type cells, and its presence causes a lag phase when cultures are transferred from glucose- to galactose-containing media. The mannose PTS appeared to drain phosphoenolpyruvate (PEP) pools in resting cells, since no PEP could be detected in resting wild-type cells, while mannose PTS mutant derivatives contained 1–3 μM PEP (mg protein). Our data provide new insight into the role of in and possibly other Gram-positive bacteria in the control of expression of an important glucose transporter that contributes to glucose-mediated catabolite control via modulation of the PEP pool.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034165-0
2010-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/695.html?itemId=/content/journal/micro/10.1099/mic.0.034165-0&mimeType=html&fmt=ahah

References

  1. Ahrne, S., Nobaek, S., Jeppsson, B., Adlerberth, I., Wold, A.E. & Molin, G. ( 1998; ). The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 85, 88–94.[CrossRef]
    [Google Scholar]
  2. Ali, N. O., Bignon, J., Rapoport, G. & Debarbouille, M. ( 2001; ). Regulation of the acetoin catabolic pathwayis controlled by sigma L in Bacillus subtilis. J Bacteriol 183, 2497–2504.[CrossRef]
    [Google Scholar]
  3. Bailey, T. L. & Elkan, C. ( 1994; ).Fitting a mixture model by expectation maximization to discover motifs inbiopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36.
    [Google Scholar]
  4. Bailey, T. L. & Gribskov, M. ( 1998; ). Combining evidence using p-values: application to sequence homologysearches. Bioinformatics 14, 48–54.[CrossRef]
    [Google Scholar]
  5. Barrios, H., Valderrama, B. & Morett, E. ( 1999; ). Compilation and analysis of σ 54-dependentpromoter sequences. Nucleic Acids Res 27, 4305–4313.[CrossRef]
    [Google Scholar]
  6. Bhattacharya, M., Fuhrman, L., Ingram, A., Nickerson, K. W. &Conway, T. ( 1995; ). Single-run separation and detectionof multiple metabolic intermediates by anion-exchange high-performance liquidchromatography and application to cell pool extracts prepared from Escherichiacoli. Anal Biochem 232, 98–106.[CrossRef]
    [Google Scholar]
  7. Boogaard, V. D. ( 2002; ). Catabolitecontrol of sugar metabolism in Streptococcus thermophilus. PhD thesis,Wageningen University, Wageningen, The Netherlands.
  8. Bron, P. A. ( 2004; ). The molecularresponse of Lactobacillus plantarum to intestinal passage and conditions.PhD thesis, Wageningen University, Wageningen, The Netherlands.
  9. Buck, M. ( 1986; ). Deletion analysis ofthe Klebsiella pneumoniae nitrogenase promoter: importance of spacingbetween conserved sequences around positions −12 and −24 for activationby the nifA and ntrC (glnG) products. J Bacteriol 166, 545–551.
    [Google Scholar]
  10. Buck, M., Miller, S., Drummond, M. & Dixon, R. ( 1986; ). Upstream activator sequences are present in the promotersof nitrogen fixation genes. Nature 320, 374–377.[CrossRef]
    [Google Scholar]
  11. Buck, M., Gallegos, M. T., Studholme, D. J., Guo, Y. & Gralla,J. D. ( 2000; ). The bacterial enhancer-dependent σ 54 (σ N) transcriptionfactor. J Bacteriol 182, 4129–4136.[CrossRef]
    [Google Scholar]
  12. Chaillou, S., Postma, P. W. & Pouwels, P. H. ( 2001; ). Contribution of the phosphoenolpyruvate : mannosephosphotransferase system to carbon catabolite repression in Lactobacilluspentosus. Microbiology 147, 671–679.
    [Google Scholar]
  13. Dalet, K., Briand, C., Cenatiempo, Y. & Hechard, Y. ( 2000; ). The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41, 441–443.[CrossRef]
    [Google Scholar]
  14. Dalet, K., Cenatiempo, Y., Cossart, P. & Hechard, Y. ( 2001; ). A σ 54-dependent PTS permeaseof the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147, 3263–3269.
    [Google Scholar]
  15. De Man, J. D., Rogosa, M. & Sharpe, M. E. ( 1960; ). A medium for the cultivation of lactobacilli. J Appl Bacteriol 23, 130–135.[CrossRef]
    [Google Scholar]
  16. de Vries, M. C., Vaughan, E. E., Kleerebezem, M. & De Vos,W. M. ( 2006; ). Lactobacillus plantarum –survival, functional and potential probiotic properties in the human intestinaltract. Int Dairy J 16, 1018–1028.[CrossRef]
    [Google Scholar]
  17. Debarbouille, M., Martin-Verstraete, I., Kunst, F. & Rapoport,G. ( 1991; ). The Bacillus subtilis sigL geneencodes an equivalent of σ 54 from Gram-negative bacteria. Proc Natl Acad Sci U S A 88, 9092–9096.[CrossRef]
    [Google Scholar]
  18. Debarbouille, M., Gardan, R., Arnaud, M. & Rapoport, G. ( 1999; ). Role of BkdR, a transcriptional activatorof the SigL-dependent isoleucine and valine degradation pathway in Bacillussubtilis. J Bacteriol 181, 2059–2066.
    [Google Scholar]
  19. Diep, D. B., Skaugen, M., Salehian, Z., Holo, H. & Nes,I. F. ( 2007; ). Common mechanisms of target cell recognitionand immunity for class II bacteriocins. Proc Natl Acad Sci U SA 104, 2384–2389.
    [Google Scholar]
  20. Ferain, T., Garmyn, D., Bernard, N., Hols, P. & Delcour,J. ( 1994; ). Lactobacillus plantarum ldhL gene:overexpression and deletion. J Bacteriol 176, 596–601.
    [Google Scholar]
  21. Finn, R. D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones,S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A. & otherauthors ( 2006; ). Pfam: clans, web tools and services. Nucleic Acids Res 34, D247–D251.[CrossRef]
    [Google Scholar]
  22. Foucaud, C. & Poolman, B. ( 1992; ).Lactose transport system of Streptococcus thermophilus. Functionalreconstitution of the protein and characterization of the kinetic mechanismof transport. J Biol Chem 267, 22087–22094.
    [Google Scholar]
  23. Francke, C., Kerkhoven, R., Wels, M. & Siezen, R. J. ( 2008; ). A generic approach to identify transcription factor-specificoperator motifs; inferences for LacI-family mediated regulation in Lactobacillusplantarum WCFS1. BMC Genomics 9, 145 [CrossRef]
    [Google Scholar]
  24. Garcia, E., Bancroft, S., Rhee, S. G. & Kustu, S. ( 1977; ). The product of a newly identified gene, gInF, is required for synthesis of glutamine synthetase in Salmonella. Proc Natl Acad Sci U S A 74, 1662–1666.[CrossRef]
    [Google Scholar]
  25. Gardan, R., Rapoport, G. & Debarbouille, M. ( 1997; ). Role of the transcriptional activator RocR in the arginine-degradationpathway of Bacillus subtilis. Mol Microbiol 24, 825–837.[CrossRef]
    [Google Scholar]
  26. Gosalbes, M. J., Monedero, V., Alpert, C. A. & Perez-Martinez,G. ( 1997; ). Establishing a model to study the regulationof the lactose operon in Lactobacillus casei. FEMS MicrobiolLett 148, 83–89.
    [Google Scholar]
  27. Grenier, F. C., Waygood, E. B. & Saier, M. H., Jr ( 1985; ). Bacterial phosphotransferase system: regulation ofthe glucose and mannose enzymes II by sulfhydryl oxidation. Biochemistry 24, 4872–4876.[CrossRef]
    [Google Scholar]
  28. Gunnewijk, M. G. & Poolman, B. ( 2000; ). HPr(His∼P)-mediated phosphorylation differently affectscounterflow and proton motive force-driven uptake via the lactose transportprotein of Streptococcus thermophilus. J Biol Chem 275, 34080–34085.[CrossRef]
    [Google Scholar]
  29. Hechard, Y., Pelletier, C., Cenatiempo, Y. & Frere, J. ( 2001; ). Analysis of σ 54-dependentgenes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericinY105. Microbiology 147, 1575–1580.
    [Google Scholar]
  30. Josson, K., Scheirlinck, T., Michiels, F., Platteeuw, C., Stanssens,P., Joos, H., Dhaese, P., Zabeau, M. & Mahillon, J. ( 1989; ). Characterization of a Gram-positive broad-host-range plasmidisolated from Lactobacillus hilgardii. Plasmid 21, 9–20.[CrossRef]
    [Google Scholar]
  31. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar,D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M. &other authors ( 2003; ). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef]
    [Google Scholar]
  32. Knol, J., Veenhoff, L., Liang, W. J., Henderson, P. J., Leblanc,G. & Poolman, B. ( 1996; ). Unidirectional reconstitutioninto detergent-destabilized liposomes of the purified lactose transport systemof Streptococcus thermophilus. J Biol Chem 271, 15358–15366.[CrossRef]
    [Google Scholar]
  33. Lambert, J. M., Bongers, R. S. & Kleerebezem, M. ( 2007; ). Cre-lox-based system for multiple gene deletionsand selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 73, 1126–1135.[CrossRef]
    [Google Scholar]
  34. Merrick, M. J. ( 1993; ). In a class ofits own – the RNA polymerase sigma factor σ 54 (σ N). Mol Microbiol 10, 903–909.[CrossRef]
    [Google Scholar]
  35. Merrick, M. J. & Gibbins, J. R. ( 1985; ). The nucleotide sequence of the nitrogen-regulation gene ntrAof Klebsiella pneumoniae and comparison with conserved features inbacterial RNA polymerase sigma factors. Nucleic Acids Res 13, 7607–7620.[CrossRef]
    [Google Scholar]
  36. Molenaar, D., Bringel, F., Schuren, F. H., de Vos, W. M., Siezen,R. J. & Kleerebezem, M. ( 2005; ). Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187, 6119–6127.[CrossRef]
    [Google Scholar]
  37. Morett, E. & Buck, M. ( 1989; ). Invivo studies on the interaction of RNA polymerase-σ 54with the Klebsiella pneumoniae and Rhizobium meliloti nifHpromoters. The role of NifA in the formation of an open promoter complex. J Mol Biol 210, 65–77.[CrossRef]
    [Google Scholar]
  38. Neves, A. R., Ramos, A., Costa, H., van Swam, I. I., Hugenholtz,J., Kleerebezem, M., de Vos, W. & Santos, H. ( 2002; ). Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determinedby in vivo nuclear magnetic resonance. Appl Environ Microbiol 68, 6332–6342.[CrossRef]
    [Google Scholar]
  39. Pieterse, B., Jellema, R. H. & van der Werf, M. J. ( 2005; ). Quenching of microbial samples for increased reliabilityof microarray data. J Microbiol Methods 64, 207–216.
    [Google Scholar]
  40. Poolman, B., Smid, E. J., Veldkamp, H. & Konings, W. N. ( 1987; ). Bioenergetic consequences of lactose starvationfor continuously cultured Streptococcus cremoris. J Bacteriol 169, 1460–1468.
    [Google Scholar]
  41. Poolman, B., Knol, J., Mollet, B., Nieuwenhuis, B. & Sulter,G. ( 1995; ). Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediatedphosphorylation. Proc Natl Acad Sci U S A 92, 778–782.[CrossRef]
    [Google Scholar]
  42. Ramnath, M., Arous, S., Gravesen, A., Hastings, J. W. &Hechard, Y. ( 2004; ). Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocinsin Lactococcus lactis. Microbiology 150, 2663–2668.[CrossRef]
    [Google Scholar]
  43. Reitzer, L. & Schneider, B. L. ( 2001; ). Metabolic context and possible physiological themes of σ 54-dependent genes in Escherichia coli. MicrobiolMol Biol Rev 65, 422–444.
    [Google Scholar]
  44. Robichon, D., Gouin, E., Debarbouille, M., Cossart, P., Cenatiempo,Y. & Hechard, Y. ( 1997; ). The rpoN (σ 54) gene from Listeria monocytogenes isinvolved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J Bacteriol 179, 7591–7594.
    [Google Scholar]
  45. Saier, M. H., Jr & Reizer, J. ( 1992; ). Proposed uniform nomenclature for the proteins and protein domains ofthe bacterial phosphoenolpyruvate : sugar phosphotransferasesystem. J Bacteriol 174, 1433–1438.
    [Google Scholar]
  46. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn.Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  47. Sasse-Dwight, S. & Gralla, J. D. ( 1988; ). Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc Natl Acad Sci U S A 85, 8934–8938.[CrossRef]
    [Google Scholar]
  48. Schujman, G. E., Guerin, M., Buschiazzo, A., Schaeffer, F.,Llarrull, L. I., Reh, G., Vila, A. J., Alzari, P. M. & de Mendoza, D. ( 2006; ). Structural basis of lipid biosynthesis regulationin Gram-positive bacteria. EMBO J 25, 4074–4083.[CrossRef]
    [Google Scholar]
  49. Smyth, G. ( 2005; ). Statistical issuesin microarray data analysis. In Functional Genomics: Methods and Protocols, pp. 111–136. Edited by M. J. Braunstein & A. B. Khodursky.Totowa: Humana Press.
  50. Stevens, M. ( 2008; ). Transcriptomeresponse of Lactobacillus plantarum to global regulator deficiency, stressand other enviromental conditions. PhD thesis, Wageningen University,Wageningen, The Netherlands.
  51. Stevens, M. J., Wiersma, A., de Vos, W. M., Kuipers, O. P.,Smid, E. J., Molenaar, D. & Kleerebezem, M. ( 2008; ). Improvement of Lactobacillus plantarum aerobic growth as directedby comprehensive transcriptome analysis. Appl Environ Microbiol 74, 4776–4778.[CrossRef]
    [Google Scholar]
  52. Studholme, D. J. & Buck, M. ( 2000; ). The biology of enhancer-dependent transcriptional regulation in bacteria:insights from genome sequences. FEMS Microbiol Lett 186, 1–9.[CrossRef]
    [Google Scholar]
  53. Studholme, D. J. & Dixon, R. ( 2003; ). Domain architectures of σ 54-dependent transcriptionalactivators. J Bacteriol 185, 1757–1767.[CrossRef]
    [Google Scholar]
  54. Teusink, B., van Enckevort, F. H., Francke, C., Wiersma, A.,Wegkamp, A., Smid, E. J. & Siezen, R. J. ( 2005; ). In silico reconstruction of the metabolic pathways of Lactobacillusplantarum: comparing predictions of nutrient requirements with thosefrom growth experiments. Appl Environ Microbiol 71, 7253–7262.[CrossRef]
    [Google Scholar]
  55. Vadeboncoeur, C. & Pelletier, M. ( 1997; ). The phosphoenolpyruvate : sugar phosphotransferase systemof oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19, 187–207.[CrossRef]
    [Google Scholar]
  56. Vadyvaloo, V., Snoep, J. L., Hastings, J. W. & Rautenbach,M. ( 2004; ). Physiological implications of class IIabacteriocin resistance in Listeria monocytogenes strains. Microbiology 150, 335–340.[CrossRef]
    [Google Scholar]
  57. Wang, L. & Gralla, J. D. ( 1998; ).Multiple in vivo roles for the −12-region elements of σ 54 promoters. J Bacteriol 180, 5626–5631.
    [Google Scholar]
  58. Woodcock, D. M., Crowther, P. J., Doherty, J., Jefferson, S.,DeCruz, E., Noyer-Weidner, M., Smith, S. S., Michael, M. Z. & Graham,M. W. ( 1989; ). Quantitative evaluation of Escherichiacoli host strains for tolerance to cytosine methylation in plasmid andphage recombinants. Nucleic Acids Res 17, 3469–3478.[CrossRef]
    [Google Scholar]
  59. Yebra, M. J., Viana, R., Monedero, V., Deutscher, J. & Perez-Martinez,G. ( 2004; ). An esterase gene from Lactobacilluscasei cotranscribed with genes encoding a phosphoenolpyruvate : sugarphosphotransferase system and regulated by a LevR-like activator and σ 54 factor. J Mol Microbiol Biotechnol 8, 117–128.[CrossRef]
    [Google Scholar]
  60. Zuniga, M., Comas, I., Linaje, R., Monedero, V., Yebra, M. J.,Esteban, C. D., Deutscher, J., Perez-Martinez, G. & Gonzalez-Candelas,F. ( 2005; ). Horizontal gene transfer in the molecularevolution of mannose PTS transporters. Mol Biol Evol 22, 1673–1685.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034165-0
Loading
/content/journal/micro/10.1099/mic.0.034165-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 695 - 707

[ PDF, 83 kb], containing: The position-specific scoring matrix (PSSM) used to search the WCFS1 genome for σ -binding sites Alignment of the ManR protein with the σ activator consensus sequence



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error