1887

Abstract

Phage-resistant and -susceptible bacteria from nodules of alfalfa and sweet clover, grown at a site without a known history of cultivation, were identified as diverse genotypes of , and species based on sequence analysis of ribosomal (16S and 23S rRNA) and protein-encoding ( and ) genes, Southern hybridization/RFLP and a range of phenotypic characteristics. Among phage-resistant bacteria, one genotype of sp. predominated on alfalfa (frequency ∼68 %) but was recovered infrequently (∼1 %) from sweet clover. A second genotype was isolated infrequently only from alfalfa. These genotypes fixed nitrogen poorly in association with sweet clover and , but were moderately effective with alfalfa. They produced a near-neutral reaction on mineral salts agar containing mannitol, which is atypical of the genus . A single isolate of sp. and two of sp. were recovered only from sweet clover. All were highly resistant to multiple antibiotics. Phylogenetic analysis indicated that sp. strain T173 is closely related to, but separate from, the non-symbiotic species ‘’. Strain T173 is unique in that it possesses a 175 kb symbiotic plasmid and elicits ineffective nodules on alfalfa, sweet clover, and The two spp. were non-symbiotic and probably represent bacterial opportunists. Three genotypes of that were symbiotically effective with alfalfa and sweet clover were encountered infrequently. Among phage-susceptible isolates, two genotypes of were encountered infrequently and were highly effective with alfalfa, sweet clover and . The ecological and practical implications of the findings are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034058-0
2010-02-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/505.html?itemId=/content/journal/micro/10.1099/mic.0.034058-0&mimeType=html&fmt=ahah

References

  1. Barnett M. J., Fisher R. F., Jones T., Komp C., Abola A. P., Barloy-Hubler F., Bowser L., Capela D., Galibert F.. other authors 2001; Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A98:9883–9888
    [Google Scholar]
  2. Barran L. R., Bromfield E. S. P.. 1997; Competition among rhizobia for nodulation of legumes. In Biotechnology and Improvement of Forage Legumes pp343–374 Edited by McKersie B. D., Brown D. C. W.. New York: CAB International;
    [Google Scholar]
  3. Barran L. R., Bromfield E. S. P., Rastogi V., Whitwill S. T., Wheatcroft R.. 1991; Transposition and copy number of insertion sequence IS Rml are not correlated with symbiotic performance of Rhizobium meliloti from two field sites. Can J Microbiol37:576–579
    [Google Scholar]
  4. Barran L. R., Bromfield E. S. P., Laberge S., Wheatcroft R.. 1994; Insertion sequence (IS) hybridization supports classification of R. meliloti by phage typing. Mol Ecol3:267–270
    [Google Scholar]
  5. Bergey's Manual of Systematic Bacteriology. 2005; The ProteobacteriaVolume Two Edited by Brenner J., Kreig N. R., Staley. New York: Springer;
    [Google Scholar]
  6. Binde D. R., Menna P., Bangel E. V., Barcellos F. G., Hungria M.. 2009; rep-PCR fingerprinting and taxonomy based on the sequencing of the 16S rRNA gene of 54 elite commercial rhizobial strains. Appl Microbiol Biotechnol83:897–908
    [Google Scholar]
  7. Bromfield E. S. P., Thurman N. P., Whitwill S. T., Barran L. R.. 1987; Plasmids and symbiotic effectiveness of representative phage types from two indigenous populations of Rhizobium meliloti. J Gen Microbiol133:3457–3466
    [Google Scholar]
  8. Bromfield E. S. P., Wheatcroft R., Barran L. R.. 1994; Medium for direct isolation of Rhizobium meliloti from soils. Soil Biol Biochem26:423–428
    [Google Scholar]
  9. Bromfield E. S. P., Behara A. M. P., Singh R. S., Barran L. R.. 1998; Genetic variation in local populations of Sinorhizobium meliloti. Soil Biol Biochem30:1707–1716
    [Google Scholar]
  10. Bromfield E. S. P., Butler G., Barran L. R.. 2001; Temporal effects on the composition of a population of Sinorhizobium meliloti associated with Medicago sativa and Melilotus alba. Can J Microbiol47:567–573
    [Google Scholar]
  11. Broughton W. J.. 2003; Roses by other names: taxonomy of the Rhizobiaceae. J Bacteriol185:2975–2979
    [Google Scholar]
  12. Del Papa M. F., Balague L. J., Sowinski S. C., Wegener C., Segundo E., Abarca F. M., Toro T., Niehaus K., Puhler A.. other authors 1999; Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of Central Argentina and Uruguay. Appl Environ Microbiol65:1420–1427
    [Google Scholar]
  13. Eardly B. D., Materon L. A., Smith N. H., Johnson D. A., Rumbaugh M. D., Selander R. K.. 1990; Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl Environ Microbiol56:187–194
    [Google Scholar]
  14. Eardly B. D., Young J. P. W., Selander R. K.. 1992; Phylogenetic position of Rhizobium sp. strain OR191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl Environ Microbiol58:1809–1815
    [Google Scholar]
  15. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791
    [Google Scholar]
  16. Hunt D. E., Klepac-Ceraj V., Acinas S. G., Gautier C., Bertilsson S., Polz M. F.. 2006; Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl Environ Microbiol72:2221–2225
    [Google Scholar]
  17. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P.. 2001; Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol51:2037–2048
    [Google Scholar]
  18. Laguerre G., Courde L., Nouaïm R., Lamy I., Revellin C., Breuil M., Chaussod R.. 2006; Response of rhizobial populations to moderate copper stress applied to an agricultural soil. Microb Ecol52:426–435
    [Google Scholar]
  19. Lei X., Wang E. T., Chen W. F., Sui X. H., Chen W. X.. 2008; Diverse bacteria isolated from root nodules of wild Vicia species in temperate region of China. Arch Microbiol190:657–671
    [Google Scholar]
  20. Mantelin S., Fisher-Le Saux M., Zakhia F., Bena G., Bonneau S., Jeder H., de Lajudie P., Cleyet-Marel J. C.. 2006; Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp.nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp.nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol56:827–839
    [Google Scholar]
  21. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A.. 2007; Multilocus sequence analysis of Ensifer and related species. Int J Syst Evol Microbiol57:489–503
    [Google Scholar]
  22. Martens M., Dawyndt P., Coopman R., De Vos P., Gillis M., Willems A.. 2008; Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol58:200–214
    [Google Scholar]
  23. Mártir M. C., Tlusty B., van Berkum P., Graham P. H.. 2007; The genetic diversity of rhizobia associated with Dalea purpurea Vent. in fragmented grasslands of west-central Minnesota. Can J Microbiol53:351–363
    [Google Scholar]
  24. Posada D.. 2006; ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res34:W700–W703
    [Google Scholar]
  25. Rastogi V. K., Bromfield E. S. P., Whitwill S. T., Barran L. R.. 1992; A cryptic plasmid of indigenous Rhizobium meliloti possesses reiterated nodC and nifE genes and undergoes DNA rearrangement. Can J Microbiol38:563–568
    [Google Scholar]
  26. Rogel M. A., Hernández-Lucas I., Kuykendall L. D., Balkwill D. L., Martinez-Romero E.. 2001; Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol67:3264–3268
    [Google Scholar]
  27. Rome S., Fernandez M. P., Brunel B., Normand P., Cleyet-Marcel J. C.. 1996; Sinorhizobium medicae sp. nov isolated from annual Medicago spp. Int J Syst Bacteriol46:972–982
    [Google Scholar]
  28. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  29. Segovia L., Young J. P. W., Martinez-Romero E.. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type1 strains as Rhizobium etli sp. nov. Int J Syst Bacteriol43:374–377
    [Google Scholar]
  30. Silva C., Kan F. L., Martinez–Romero E.. 2007; Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules of Medicago spp. in Mexico. FEMS Microbiol Ecol60:477–489
    [Google Scholar]
  31. Tambong J. T., de Cock A. W., Tinker N. A., Levesque C. A.. 2006; Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol72:2691–2706
    [Google Scholar]
  32. Tamura K., Nei M.. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol10:512–526
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S.. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599
    [Google Scholar]
  34. Thurman N. P., Bromfield E. S. P.. 1988; Effect of variation within and between Medicago and Melilotus species on the composition and dynamics of indigenous populations of Rhizobium meliloti. Soil Biol Biochem20:31–38
    [Google Scholar]
  35. van Berkum P., Fuhrmann J. J.. 2000; Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region divergence. Int J Syst Evol Microbiol50:2165–2172
    [Google Scholar]
  36. van Berkum P., Terefework Z., Paulin L., Suomalainen S., Lindström K., Eardly B. D.. 2003; Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol185:2988–2998
    [Google Scholar]
  37. Vinuesa P., Silva C., Werner D., Martinez-Romero E.. 2005; Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol34:29–54
    [Google Scholar]
  38. Wang E. T., Martinez-Romero J., Martinez-Romero E.. 1999; Genetic diversity of rhizobia from Leucaena leucocephala nodules in Mexican soils. Mol Ecol8:711–724
    [Google Scholar]
  39. Wang E. T., Tan Z. Y., Willems A., Ferdandez-Lopez M., Martinez-Romero E.. 2002; Sinorhizobium morelense sp. nov., a Leucaena leucocephala- associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol52:1687–1693
    [Google Scholar]
  40. Willems A., Fernandez-Lopez M., Munoz-Adelantado E., Goris J., De Vos P., Martinez-Romero E., Toro N., Gillis M.. 2003; Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerans casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. request for an opinion. Int J Syst Evol Microbiol53:1207–1217
    [Google Scholar]
  41. Young J. M.. 2003; The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida (1982). Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an Opinion. Int J Syst Evol Microbiol53:2107–2110
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034058-0
Loading
/content/journal/micro/10.1099/mic.0.034058-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error