sphingolipid C9-methyltransferase is involved in hyphal elongation Free

Abstract

C9-methylated glucosylceramide is a fungus-specific sphingolipid. This lipid is a major membrane component in the cell and is thought to play important roles in the growth and virulence of several fungal species. To investigate the importance of the methyl branch of the long-chain base in glucosylceramides in pathogenic fungi, we identified and characterized a sphingolipid C9-methyltransferase gene (, C9-ethylransferase for phingolipid ) in the pathogenic yeast . The disruptant lacked ()-9-methylsphinga-4,8-dienine in its glucosylceramides and contained ()-sphing-4-enine and ()-sphinga-4,8-dienine. Reintroducing the gene into the disruptant restored the synthesis of ()-9-methylsphinga-4,8-dienine in the glucosylceramides. We also created a disruptant of the gene, encoding glucosylceramide synthase, which catalyses the final step of glucosylceramide synthesis, in and compared this mutant with the disruptant. The and disruptants both had a decreased hyphal growth rate compared to the wild-type strain. The disruptant showed increased susceptibility to SDS and fluconazole, similar to a previously reported disruptant that contained only ()-sphing-4-enine in its glucosylceramides, suggesting that these strains have defects in their cell membrane structures. In contrast, the disruptant grew similarly to wild-type in medium containing SDS or fluconazole. These results suggest that the C9-methyl group of a long-chain base in glucosylceramides plays an important role in the hyphal elongation of independent of lipid membrane disruption.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033985-0
2010-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1234.html?itemId=/content/journal/micro/10.1099/mic.0.033985-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1992 Current Protocols in Molecular Biology New York: Green Publishing Associates & Wiley-Interscience;
  2. Bollinger C. R., Teichgräber V., Gulbins E. 2005; Ceramide-enriched membrane domains. Biochim Biophys Acta 1746:284–294
    [Google Scholar]
  3. Chazal N., Gerlier D. 2003; Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67:226–237
    [Google Scholar]
  4. Hanaoka N., Umeyama T., Ueno K., Ueda K., Beppu T., Fugo H., Uehara Y., Niimi M. 2005; A putative dual-specific protein phosphatase encoded by YVH1 controls growth, filamentation and virulence in Candida albicans. Microbiology 151:2223–2232
    [Google Scholar]
  5. Kawai G., Ikeda Y. 1985; Structure of biologically active and inactive cerebrosides prepared from Schizophyllum commune. J Lipid Res 26:338–343
    [Google Scholar]
  6. Kawai G., Ohnishi M., Fujino Y., Ikeda Y. 1986; Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. J Biol Chem 261:779–784
    [Google Scholar]
  7. Kumamoto C. A., Vinces M. D. 2005; Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol 59:113–133
    [Google Scholar]
  8. Leipelt M., Warnecke D., Zähringer U., Ott C., Müller F., Hube B., Heinz E. 2001; Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem 276:33621–33629
    [Google Scholar]
  9. Levery S. B., Momany M., Lindsey R., Toledo M. S., Shayman J. A., Fuller M., Brooks K., Doong R. L., Straus A. H., Takahashi H. K. 2002; Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc: ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 525:59–64
    [Google Scholar]
  10. Martin S. W., Konopka J. B. 2004; Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 3:675–684
    [Google Scholar]
  11. Merrill A. H. Jr, Schmelz E. M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A., Wang E. 1997; Sphingolipids – the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142:208–225
    [Google Scholar]
  12. Monk B. C., Niimi K., Lin S., Knight A., Kardos T. B., Cannon R. D., Parshot R., King A., Lun D., Harding D. R. 2005; Surface-active fungicidal d-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49:57–70
    [Google Scholar]
  13. Murad A. M., Lee P. R., Broadbent I. D., Barelle C. J., Brown A. J. 2000; CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16:325–327
    [Google Scholar]
  14. Oura T., Kajiwara S. 2008; Disruption of the sphingolipid Δ8-desaturase gene causes a delay in the morphological change of Candida albicans. Microbiology 154:3795–3803
    [Google Scholar]
  15. Pinto M. R., Rodrigues M. L., Travassos L. R., Haido R. M., Wait R., Barreto-Bergter E. 2002; Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology 12:251–260
    [Google Scholar]
  16. Ramamoorthy V., Cahoon E. B., Li J., Thokala M., Minto R. E., Shah D. M. 2007; Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol Microbiol 66:771–786
    [Google Scholar]
  17. Ramamoorthy V., Cahoon E. B., Thokala M., Kaur J., Li J., Shah D. M. 2009; Sphingolipid C-9 methyltransferases are important for growth and virulence but not for sensitivity to antifungal plant defensins in Fusarium graminearum. Eukaryot Cell 8:217–229
    [Google Scholar]
  18. Rittershaus P. C., Kechichian T. B., Allegood J. C., Merrill A. H. Jr, Hennig M., Luberto C., Del Poeta M. 2006; Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116:1651–1659
    [Google Scholar]
  19. Rodrigues M. L., Travassos L. R., Miranda K. R., Franzen A. J., Rozental S., de Souza W., Alviano C. S., Barreto-Bergter E. 2000; Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun 68:7049–7060
    [Google Scholar]
  20. Saito M., Saito M., Cooper T. B., Vadasz C. 2005; Ethanol-induced changes in the content of triglycerides, ceramides, and glucosylceramides in cultured neurons. Alcohol Clin Exp Res 29:1374–1383
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  22. Sperling P., Heinz E. 2003; Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632:1–15
    [Google Scholar]
  23. Sperling P., Zähringer U., Heinz E. 1998; A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J Biol Chem 273:28590–28596
    [Google Scholar]
  24. Takakuwa N., Kinoshita M., Oda Y., Ohnishi M. 2002; Isolation and characterization of the genes encoding Δ8-sphingolipid desaturase from Saccharomyces kluyveri and Kluyveromyces lactis. Curr Microbiol 45:459–461
    [Google Scholar]
  25. Tanji M., Kinoshita M., Yada H., Yamane M., Kakuta Y., Motoshima H., Oda Y., Ohnishi M. 2004; Effects of growth temperature on cerebroside content and chemical composition in Kluyveromyces lactis. J Oleo Sci 53:127–133
    [Google Scholar]
  26. Ternes P., Franke S., Zähringer U., Sperling P., Heinz E. 2002; Identification and characterization of a sphingolipid Δ4-desaturase family. J Biol Chem 277:25512–25518
    [Google Scholar]
  27. Ternes P., Sperling P., Albrecht S., Franke S., Cregg J. M., Warnecke D., Heinz E. 2006; Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling. J Biol Chem 281:5582–5592
    [Google Scholar]
  28. Thevissen K., Warnecke D. C., François I. E., Leipelt M., Heinz E., Ott C., Zähringer U., Thomma B. P., Ferket K. K., Cammue B. P. 2004; Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905
    [Google Scholar]
  29. Umeyama T., Nagai Y., Niimi M., Uehara Y. 2002; Construction of FLAG tagging vectors for Candida albicans. Yeast 19:611–618
    [Google Scholar]
  30. Umeyama T., Kaneko A., Nagai Y., Hanaoka N., Tanabe K., Takano Y., Niimi M., Uehara Y. 2005; Candida albicans protein kinase CaHsl1p regulates cell elongation and virulence. Mol Microbiol 55:381–395
    [Google Scholar]
  31. Warnecke D., Heinz E. 2003; Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 60:919–941
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033985-0
Loading
/content/journal/micro/10.1099/mic.0.033985-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed