1887

Abstract

The effect of four sugars (glucose, galactose, lactose and fructose) on exopolysaccharide (EPS) production by subsp. CRC 002 was evaluated. More EPS was produced when CRC 002 was grown on lactose in the absence of pH control, with a production of 1080±120 mg EPS l (<0.01) after 24 h of incubation. For fructose, galactose and glucose, EPS production was similar, at 512±63, 564±165 and 616±93 mg EPS l, respectively. The proposed repeating unit composition of the EPS is 2 galactose to 3 glucose. The effect of sugar and fermentation time on expression of genes involved in sugar nucleotide production (, , , , , and ) and the priming glycosyltransferase () was quantified using real-time reverse transcription PCR. A significantly higher transcription level of (9.29-fold) and the genes involved in the Leloir pathway (, 4.10-fold; , 2.78-fold; and , 4.95-fold) during exponential growth was associated with enhanced EPS production on lactose compared to glucose. However, expression, linking glucose metabolism with the Leloir pathway, was not correlated with EPS production on different sugars. Genes coding for dTDP-rhamnose biosynthesis were also differentially expressed depending on sugar source and growth phase, although rhamnose was not present in the composition of the EPS. This precursor may be used in cell wall polysaccharide biosynthesis. These results contribute to understanding the changes in gene expression when different sugar substrates are catabolized by subsp. CRC 002.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033720-0
2010-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/653.html?itemId=/content/journal/micro/10.1099/mic.0.033720-0&mimeType=html&fmt=ahah

References

  1. Abbad Andaloussi, S., Talbaoui, H., Marczak, R. & Bonaly,R. ( 1995; ). Isolation and characterization of exocellularpolysaccharides produced by Bifidobacterium longum. ApplMicrobiol Biotechnol 43, 995–1000.
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang,J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generationof protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Boels, I. C., Ramos, A., Kleerebezem, M. & de Vos, W. M. ( 2001a; ). Functional analysis of the Lactococcuslactis galU and galE genes and their impact on sugar nucleotideand exopolysaccharide biosynthesis. Appl Environ Microbiol 67, 3033–3040.[CrossRef]
    [Google Scholar]
  4. Boels, I. C., van Kranenburg, R., Hugenholtz, J., Kleerebezem,M. & de Vos, W. M. ( 2001b; ). Sugar catabolism andits impact on the biosynthesis and engineering of exopolysaccharide productionin lactic acid bacteria. Int Dairy J 11, 723–732.[CrossRef]
    [Google Scholar]
  5. Boels, I. C., Kleerebezem, M. & de Vos, W. M. ( 2003a; ). Engineering of carbon distribution between glycolysis andsugar nucleotide biosynthesis in Lactococcus lactis. Appl Environ Microbiol 69, 1129–1135.[CrossRef]
    [Google Scholar]
  6. Boels, I. C., van Kranenburg, R., Kanning, M. W., Chong, B.F., de Vos, W. M. & Kleerebezem, M. ( 2003b; ). Increasedexopolysaccharide production in Lactococcus lactis due to increasedlevels of expression of the NIZO B40 eps gene cluster. Appl Environ Microbiol 69, 5029–5031.[CrossRef]
    [Google Scholar]
  7. Broadbent, J. R., McMahon, D. J., Welker, D. L., Oberg, C. J. &Moineau, S. ( 2003; ). Biochemistry, genetics, and applicationsof exopolysaccharide production in Streptococcus thermophilus: areview. J Dairy Sci 86, 407–423.[CrossRef]
    [Google Scholar]
  8. Cerning, J. ( 1995; ). Production of exopolysaccharidesby lactic acid bacteria and dairy propionibacteria. Lait 75, 463–472.[CrossRef]
    [Google Scholar]
  9. Cerning, J., Renard, C. M. G. C., Thibault, J. F., Bouillanne,C., Landon, M., Desmazeaud, M. & Topisirovic, L. ( 1994; ). Carbon source requirements for exopolysaccharide production by Lactobacilluscasei CG11 and partial structure analysis of the polymer. Appl Environ Microbiol 60, 3914–3919.
    [Google Scholar]
  10. Dabour, N. & LaPointe, G. ( 2005; ).Identification and molecular characterization of the chromosomal exopolysaccharidebiosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl Environ Microbiol 71, 7414–7425.[CrossRef]
    [Google Scholar]
  11. Degeest, B. & De Vuyst, L. ( 1999; ).Indication that the nitrogen source influences both amount and size of exopolysaccharidesproduced by Streptococcus thermophilus LY03 and modelling of thebacterial growth and exopolysaccharide production in a complex medium. Appl Environ Microbiol 65, 2863–2870.
    [Google Scholar]
  12. Degeest, B. & De Vuyst, L. ( 2000; ).Correlation of activities of the enzymes alpha-phosphoglucomutase, UDP-galactose4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesisby Streptococcus thermophilus LY03. Appl Environ Microbiol 66, 3519–3527.[CrossRef]
    [Google Scholar]
  13. Degeest, B., Vaningelgem, F. & De Vuyst, L. ( 2001; ). Microbial physiology, fermentation kinetics, and processengineering of heteropolysaccharide production by lactic acid bacteria. Int Dairy J 11, 747–757.[CrossRef]
    [Google Scholar]
  14. Delcenserie, V., Lessard, M. H., LaPointe, G. & Roy, D. ( 2008; ). Genome comparison of Bifidobacteriumlongum strains NCC2705 and CRC-002 using suppression subtractive hybridization. FEMS Microbiol Lett 280, 50–56.[CrossRef]
    [Google Scholar]
  15. De Vuyst, L. & Degeest, B. ( 1999; ).Heteropolysaccharides from lactic acid bacteria. FEMS MicrobiolRev 23, 153–177.
    [Google Scholar]
  16. De Vuyst, L., De Vin, F., Vaningelgem, F. & Degeest, B. ( 2001; ). Recent developments in the biosynthesis andapplications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11, 687–707.[CrossRef]
    [Google Scholar]
  17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. &Smith, F. ( 1956; ). Colorimetric method for determinationof sugars and related substances. Anal Chem 28, 350–356.[CrossRef]
    [Google Scholar]
  18. Finn, R. D., Mistry, J., Schuster-Böckler, B., Griffiths-Jones,S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A. & otherauthors ( 2006; ). Pfam: clans, web tools and services. Nucleic Acids Res 34, D247–D251.[CrossRef]
    [Google Scholar]
  19. Grand, M., Küffer, M. & Baumgartner, A. ( 2003; ). Quantitative analysis and molecular identification of bifidobacteriastrains in probiotic milk products. Eur Food Res Technol 217, 90–92.[CrossRef]
    [Google Scholar]
  20. Hsieh, Y. C., Liang, S. M., Tsai, W. L., Chen, Y. H., Liu, T.Y. & Liang, C. M. ( 2003; ). Study of capsular polysaccharidefrom Vibrio parahaemolyticus. Infect Immun 71, 3329–3336.[CrossRef]
    [Google Scholar]
  21. Hung, D. T., Zhu, J., Sturtevant, D. & Mekalanos, J. J. ( 2006; ). Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59, 193–201.[CrossRef]
    [Google Scholar]
  22. Jolly, L. & Stingele, F. ( 2001; ).Molecular organization and functionality of exopolysaccharide gene clustersin lactic acid bacteria. Int Dairy J 11, 733–745.[CrossRef]
    [Google Scholar]
  23. Kohno, M., Suzuki, S., Kanaya, T., Yoshino, T., Matsuura, Y.,Asada, M. & Kitamura, S. ( 2009; ). Structural characterizationof the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydr Polym 77, 351–357.[CrossRef]
    [Google Scholar]
  24. Laws, A. P. & Marshall, V. M. ( 2001; ). The relevance of exopolysaccharides to the rheological properties inmilk fermented with ropy strains of lactic acid bacteria. Int DairyJ 11, 709–721.
    [Google Scholar]
  25. Leahy, S. C., Higgins, D. G., Fitzgerald, G. F. & van Sinderen,D. ( 2005; ). Getting better with bifidobacteria. J Appl Microbiol 98, 1303–1315.[CrossRef]
    [Google Scholar]
  26. Levander, F. & Rådström, P. ( 2001; ). Requirement for phosphoglucomutase in exopolysaccharide biosynthesisin glucose- and lactose-utilizing Streptococcus thermophilus. Appl Environ Microbiol 67, 2734–2738.[CrossRef]
    [Google Scholar]
  27. Levander, F., Svensson, M. & Rådström, P. ( 2002; ). Enhanced exopolysaccharide production by metabolicengineering of Streptococcus thermophilus. Appl EnvironMicrobiol 68, 784–790.
    [Google Scholar]
  28. Looijesteijn, P. J., Boels, I. C., Kleerebezem, M. & Hugenholtz,J. ( 1999; ). Regulation of exopolysaccharide productionby Lactococcus lactis subsp. cremoris by the sugar source. Appl Environ Microbiol 65, 5003–5008.
    [Google Scholar]
  29. Marshall, V. M., Laws, A. P., Gu, Y., Levander, F., Rådström,P., De Vuyst, L., Degeest, B., Vaningelgem, F., Dunn, H. & other authors ( 2001; ). Exopolysaccharide-producing strains of thermophiliclactic acid bacteria cluster into groups according to their EPS structure. Lett Appl Microbiol 32, 433–437.[CrossRef]
    [Google Scholar]
  30. Masco, L., Vanhoutte, T., Temmerman, R., Swings, J. & Huys,G. ( 2007; ). Evaluation of real-time PCR targeting the16S rRNA and recA genes for the enumeration of bifidobacteria inprobiotic products. Int J Food Microbiol 113, 351–357.[CrossRef]
    [Google Scholar]
  31. Mazmanian, S. K. & Kasper, D. L. ( 2006; ). The love-hate relationship between bacterial polysaccharides and thehost immune system. Nat Rev Immunol 6, 849–858.[CrossRef]
    [Google Scholar]
  32. Nagaoka, M., Shibata, H., Kimura, I., Hashimoto, S., Kimura,K., Sawada, H. & Yokokura, T. ( 1995; ). Structuralstudies on a cell wall polysaccharide from Bifidobacterium longumYIT4028. Carbohydr Res 274, 245–249.[CrossRef]
    [Google Scholar]
  33. Norris, R. F., Flanders, T., Tomarelli, R. M. & György,P. ( 1950; ). The isolation and cultivation of Lactobacillusbifidus; a comparison of branched and unbranched strains. J Bacteriol 60, 681–696.
    [Google Scholar]
  34. Palframan, R. J., Gibson, G. R. & Rastall, R. A. ( 2003; ). Carbohydrate preferences of Bifidobacteriumspecies isolated from the human gut. Curr Issues Intest Microbiol 4, 71–75.
    [Google Scholar]
  35. Parche, S., Beleut, M., Rezzonico, E., Jacobs, D., Arigoni,F., Titgemeyer, F. & Jankovic, I. ( 2006; ). Lactose-over-glucosepreference in Bifidobacterium longum NCC2705: glcP, encodinga glucose transporter, is subject to lactose repression. J Bacteriol 188, 1260–1265.[CrossRef]
    [Google Scholar]
  36. Parche, S., Amon, J., Jankovic, I., Rezzonico, E., Beleut, M.,Barutçu, H., Schendel, I., Eddy, M. P., Burkovski, A. & other authors ( 2007; ). Sugar transport systems of Bifidobacteriumlongum NCC2705. J Mol Microbiol Biotechnol 12, 9–19.[CrossRef]
    [Google Scholar]
  37. Peirson, S. N., Butler, J. N. & Foster, R. G. ( 2003; ). Experimental validation of novel and conventional approachesto quantitative real-time PCR data analysis. Nucleic Acids Res 31, e73 [CrossRef]
    [Google Scholar]
  38. Pfaffl, M. W. ( 2001; ). A new mathematicalmodel for relative quantification in real-time RT-PCR. NucleicAcids Res 29, e45
    [Google Scholar]
  39. Pfaffl, M. W., Horgan, G. W. & Dempfle, L. ( 2002; ). Relative expression software tool (REST) for group-wisecomparison and statistical analysis of relative expression results in real-timePCR. Nucleic Acids Res 30, e36 [CrossRef]
    [Google Scholar]
  40. Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant,F. & Matuchansky, C. ( 2005; ). Review article: bifidobacteriaas probiotic agents – physiological effects and clinical benefits. Aliment Pharmacol Ther 22, 495–512.[CrossRef]
    [Google Scholar]
  41. Poupard, J. A., Husain, I. & Norris, R. F. ( 1973; ). Biology of the bifidobacteria. Bacteriol Rev 37, 136–165.
    [Google Scholar]
  42. Provencher, C., LaPointe, G., Sirois, S., Van Calsteren, M.R. & Roy, D. ( 2003; ). Consensus-degenerate hybridoligonucleotide primers for amplification of priming glycosyltransferase genesof the exopolysaccharide locus in strains of the Lactobacillus caseigroup. Appl Environ Microbiol 69, 3299–3307.[CrossRef]
    [Google Scholar]
  43. Roberts, C. M., Fett, W. F., Osman, S. F., Wijey, C., O'Connor,J. V. & Hoover, D. G. ( 1995; ). Exopolysaccharideproduction by Bifidobacterium longum BB-79. J Appl Bacteriol 78, 463–468.[CrossRef]
    [Google Scholar]
  44. Roy, D. ( 2005; ). Technological aspectsrelated to the use of bifidobacteria in dairy products. Lait 85, 39–56.[CrossRef]
    [Google Scholar]
  45. Roy, D., Chevalier, P., Ward, P. & Savoie, L. ( 1991; ). Sugars fermented by Bifidobacterium infantis ATCC27920 in relation to growth and α-galactosidase activity. Appl Microbiol Biotechnol 34, 653–655.[CrossRef]
    [Google Scholar]
  46. Ruas-Madiedo, P. & de los Reyes-Gavilán, C. G. ( 2005; ). Invited review: methods for the screening, isolation,and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88, 843–856.[CrossRef]
    [Google Scholar]
  47. Ruas-Madiedo, P., Gueimonde, M., Margolles, A., de los Reyes-Gavilán,C. G. & Salminen, S. ( 2006; ). Exopolysaccharidesproduced by probiotic strains modify the adhesion of probiotics and enteropathogensto human intestinal mucus. J Food Prot 69, 2011–2015.
    [Google Scholar]
  48. Ruas-Madiedo, P., Moreno, J. A., Salazar, N., Delgado, S., Mayo,B., Margolles, A. & de los Reyes-Gavilán, C. G. ( 2007; ). Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinalmicrobiota. Appl Environ Microbiol 73, 4385–4388.[CrossRef]
    [Google Scholar]
  49. Ruas-Madiedo, P., Gueimonde, M., Arigoni, F., de los Reyes-Gavilán,C. G. & Margolles, A. ( 2009; ). Bile affects thesynthesis of exopolysaccharides by Bifidobacterium animalis. Appl Environ Microbiol 75, 1204–1207.[CrossRef]
    [Google Scholar]
  50. Salazar, N., Gueimonde, M., Hernandez-Barranco, A. M., Ruas-Madiedo,P. & de los Reyes-Gavilán, C. G. ( 2008; ).Exopolysaccharides produced by intestinal Bifidobacterium strainsact as fermentable substrates for human intestinal bacteria. ApplEnviron Microbiol 74, 4737–4745.
    [Google Scholar]
  51. Salazar, N., Prieto, A., Leal, J. A., Mayo, B., Bada-Gancedo,J. C., de los Reyes-Gavilán, C. G. & Ruas-Madiedo, P. ( 2009; ). Production of exopolysaccharides by Lactobacillusand Bifidobacterium strains of human origin, and metabolic activityof the producing bacteria in milk. J Dairy Sci 92, 4158–4168.[CrossRef]
    [Google Scholar]
  52. Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D., Berger,B., Pessi, G., Zwahlen, M. C., Desiere, F., Bork, P. & other authors ( 2002; ). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99, 14422–14427.[CrossRef]
    [Google Scholar]
  53. Stanton, C., Gardiner, G., Lynch, P. B., Collins, J. K., Fitzgerald,G. & Ross, R. P. ( 1998; ). Probiotic cheese. Int Dairy J 8, 491–496.[CrossRef]
    [Google Scholar]
  54. Svensson, M., Waak, E., Svensson, U. & Rådström,P. ( 2005; ). Metabolically improved exopolysaccharideproduction by Streptococcus thermophilus and its influence on therheological properties of fermented milk. Appl Environ Microbiol 71, 6398–6400.[CrossRef]
    [Google Scholar]
  55. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). CLUSTAL W: improving the sensitivity of progressivemultiple sequence alignment through sequence weighting, position-specificgap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  56. Van Calsteren, M. R., Pau-Roblot, C., Bégin, A. &Roy, D. ( 2002; ). Structure determination of the exopolysaccharideproduced by Lactobacillus rhamnosus strains RW-9595M and R. Biochem J 363, 7–17.[CrossRef]
    [Google Scholar]
  57. van Kranenburg, R., Boels, I. C., Kleerebezem, M. & de Vos,W. M. ( 1999; ). Genetics and engineering of microbialexopolysaccharides for food: approaches for the production of existing andnovel polysaccharides. Curr Opin Biotechnol 10, 498–504.[CrossRef]
    [Google Scholar]
  58. Vincent, D., Roy, D., Mondou, F. & Déry, C. ( 1998; ). Characterization of bifidobacteria by random DNAamplification. Int J Food Microbiol 43, 185–193.[CrossRef]
    [Google Scholar]
  59. Welman, A. D., Maddox, I. S. & Archer, R. H. ( 2006; ). Metabolism associated with raised metabolic flux to sugarnucleotide precursors of exopolysaccharides in Lactobacillus delbrueckii subsp. bulgaricus. J Ind Microbiol Biotechnol 33, 391–400.[CrossRef]
    [Google Scholar]
  60. Whitfield, C. ( 2006; ). Biosynthesis andassembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75, 39–68.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033720-0
Loading
/content/journal/micro/10.1099/mic.0.033720-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 653 - 664

[ PDF, 54 kb]: Primers used to sequence genes and for Q-RT-PCR Optimized primer concentrations for SYBR Green Q-RT-PCR Candidate reference genes for Q-RT-PCR normalization, ranked according to transcription stability estimated using BestKeeper, geNorm and NormFinder in MRSC supplemented with lactose, galactose, glucose or fructose at 6 h, 10 h and 24 h



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error