1887

Abstract

Rifampicin and its derivatives are at the forefront of the current standard chemotherapeutic regimen for active tuberculosis; they act by inhibiting the transcription activity of prokaryotic RNA polymerase. Rifampicin is believed to interact with the subunit of RNA polymerase. However, it has been observed that protein–protein interactions with RNA polymerase core enzyme lead to its reduced susceptibility to rifampicin. This mechanism became more diversified with the discovery of RbpA, a novel RNA polymerase-binding protein, in that could mitigate the effect of rifampicin on RNA polymerase activity. MsRbpA is a homologue of RbpA in On deciphering the role of MsRbpA in we found that it interacts with RNA polymerase and increases the rifampicin tolerance levels, both and It interacts with the subunit of RNA polymerase. However, it was found to be incapable of rescuing rifampicin-resistant RNA polymerases in the presence of rifampicin at the respective IC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033670-0
2010-03-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/873.html?itemId=/content/journal/micro/10.1099/mic.0.033670-0&mimeType=html&fmt=ahah

References

  1. Artsimovitch, I., Vassylyeva, M. N., Svetlov, D., Svetlov, V.,Perederina, A., Igarashi, N., Matsugaki, N., Wakatsuki, S., Tahirov, T. H. &Vassylyev, D. G. ( 2005; ). Allosteric modulation ofthe RNA polymerase catalytic reaction is an essential component of transcriptionalcontrol by rifamycins. Cell 122, 351–363.[CrossRef]
    [Google Scholar]
  2. Bandow, J. E., Brotz, H. & Hecker, M. ( 2002; ). Bacillus subtilis tolerance of moderate concentrationsof rifampin involves the σ B-dependent general andmultiple stress response. J Bacteriol 184, 459–467.[CrossRef]
    [Google Scholar]
  3. Chowdhury, R. P., Gupta, S. & Chatterji, D. ( 2007; ). Identification and characterization of the dpspromoter of Mycobacterium smegmatis: promoter recognition by stress-specificextracytoplasmic function sigma factors σ H and σ F. J Bacteriol 189, 8973–8981.[CrossRef]
    [Google Scholar]
  4. Flåtten, I., Morigen & Skartstad, K. ( 2009; ). DnaA protein interacts with RNA polymerase and partiallyprotects it from the effect of rifampicin. Mol Microbiol 71, 1018–1030.[CrossRef]
    [Google Scholar]
  5. Gentry, D. R. & Burgess, R. R. ( 1993; ). Cross-linking of Escherichia coli RNA polymerase subunits: identificationof β′ as the binding site for ω. Biochemistry 32, 11224–11227.[CrossRef]
    [Google Scholar]
  6. Hu, Y., Mangan, J., Dhillon, J., Sole, K., Mitchison, D., Butcher,P. & Coates, A. ( 2000; ). Detection of m-RNA transcriptsand active transcription in persistent Mycobacterium tuberculosisinduced by exposure to rifampin and pyrazinamide. J Bacteriol 182, 6358–6365.[CrossRef]
    [Google Scholar]
  7. Jain, V., Sujatha, S., Ojha, A. K. & Chatterji, D. ( 2005; ). Identification and characterization of relpromoter element of Mycobacterium tuberculosis. Gene 351, 149–157.[CrossRef]
    [Google Scholar]
  8. Jin, D. J. & Gross, C. A. ( 1988; ).Mapping and sequencing of mutations in the Escherichia coli rpoBgene that lead to rifampicin resistance. J Mol Biol 202, 45–58.[CrossRef]
    [Google Scholar]
  9. Kumar, M. & Chatterji, D. ( 2008; ).Cyclic di-GMP: a second messenger required for long-term survival, but notfor biofilm formation, in Mycobacterium smegmatis. Microbiology 154, 2942–2955.[CrossRef]
    [Google Scholar]
  10. Mackay, J. P., Sunde, M., Lowry, J. A., Crossley, M. & Matthews,J. M. ( 2007; ). Protein interactions: is seeing believing? Trends Biochem Sci 32, 530–531.[CrossRef]
    [Google Scholar]
  11. Mathew, R., Ramakanth, M. & Chatterji, D. ( 2005; ). Deletion of the gene rpoZ, encoding the ω subunit of RNA polymerase, in Mycobacterium smegmatis resultsin fragmentation of the β′ subunit in the enzyme assembly. J Bacteriol 187, 6565–6570.[CrossRef]
    [Google Scholar]
  12. Miller, L. P., Crawford, J. T. & Shinnick, T. M. ( 1994; ). The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother 38, 805–811.[CrossRef]
    [Google Scholar]
  13. Mukherjee, R. & Chatterji, D. ( 2008; ). Stationary phase induced alterations in mycobacterial RNA polymeraseassembly: a cue to its phenotypic resistance towards rifampicin. Biochem Biophys Res Commun 369, 899–904.[CrossRef]
    [Google Scholar]
  14. Murphy, D. J. & Brown, J. R. ( 2007; ). Identification of gene targets against dormant phase Mycobacteriumtuberculosis infections. BMC Infect Dis 7, 84 [CrossRef]
    [Google Scholar]
  15. Newell, K. V., Thomas, D. P., Brekasis, D. & Paget, M. S.B. ( 2006; ). The RNA polymerase-binding protein RbpAconfers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol Microbiol 60, 687–696.[CrossRef]
    [Google Scholar]
  16. Nguyen, L. & Thompson, C. J. ( 2006; ). Foundations of antibiotic resistance in bacterial physiology: the mycobacterialparadigm. Trends Microbiol 14, 304–312.[CrossRef]
    [Google Scholar]
  17. Paget, M. S., Molle, V., Cohen, G., Aharonowitz, Y. & Buttner,M. J. ( 2001; ). Defining the disulfide stress responsein Streptomyces coelicolor A3(2): identification of the σ R regulon. Mol Microbiol 42, 1007–1020.[CrossRef]
    [Google Scholar]
  18. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. ( 2003; ). Genes required for mycobacterial growth defined by highdensity mutagenesis. Mol Microbiol 48, 77–84.[CrossRef]
    [Google Scholar]
  19. Triccas, J. A., Parish, T., Britton, W. J. & Gicquel, B. ( 1998; ). An inducible expression system permittingefficient purification of recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett 167, 151–156.[CrossRef]
    [Google Scholar]
  20. Villain-Guillot, P., Bastide, L., Gualtieri, M. & Leonetti,J. P. ( 2007; ). Progress in targeting bacterial transcription. Drug Discov Today 12, 200–208.[CrossRef]
    [Google Scholar]
  21. Wayne, L. G. & Hayes, L. G. ( 1996; ). An in vitro model for sequential study of shiftdown of Mycobacteriumtuberculosis through two stages of nonreplicating persistence. Infect Immun 64, 2062–2069.
    [Google Scholar]
  22. Węgrzyn, A., Szalewska-Palasz, A., Blaszczak, A., Libereck,K. & Węgrzyn, G. ( 1998; ). Differential inhibitionof transcription from σ 70- and σ 32-dependent promoters by rifampicin. FEBS Lett 440, 172–174.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033670-0
Loading
/content/journal/micro/10.1099/mic.0.033670-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 873 - 883

(Methods, figures and tables) [ PDF] (1.5 MB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error