Remnant signal peptides on non-exported enzymes: implications for the evolution of prokaryotic respiratory chains Free

Abstract

The twin-arginine translocation (Tat) pathway is a prokaryotic protein targeting system dedicated to the transmembrane translocation of folded proteins. Substrate proteins are directed to the Tat translocase by signal peptides bearing a conserved SRRxFLK ‘twin-arginine’ motif. In , most of the 27 periplasmically located Tat substrates are cofactor-containing respiratory enzymes, and many of these harbour a molybdenum cofactor at their active site. Molybdenum cofactor-containing proteins are not exclusively located in the periplasm, however, with the major respiratory nitrate reductase (NarG) and the biotin sulfoxide reductase (BisC), for example, being located at the cytoplasmic side of the membrane. Interestingly, both NarG and BisC contain ‘N-tail’ regions that bear some sequence similarity to twin-arginine signal peptides. In this work, we have examined the relationship between the non-exported N-tails and the Tat system. Using a sensitive genetic screen for Tat transport, variant N-tails were identified that displayed Tat transport activity. For the NarG 36-residue N-tail, six amino acid changes were needed to induce transport activity. However, these changes interfered with binding by the NarJ biosynthetic chaperone and impaired biosynthesis of the native enzyme. For the BisC 36-residue N-tail, only five amino acid substitutions were needed to restore Tat transport activity. These modifications also impaired BisC activity, but it was not possible to identify a biosynthetic chaperone for this enzyme. These data highlight an intimate genetic and evolutionary link between some non-exported redox enzymes and those transported across membranes by the Tat translocation system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033647-0
2009-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3992.html?itemId=/content/journal/micro/10.1099/mic.0.033647-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Berks B. C. 1996; A common export pathway for proteins binding complex redox cofactors?. Mol Microbiol 22:393–404
    [Google Scholar]
  3. Berks B. C., Palmer T., Sargent F. 2003; The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254
    [Google Scholar]
  4. Bertero M. G., Rothery R. A., Palak M., Hou C., Lim D., Blasco F., Weiner J. H., Strynadka N. C. 2003; Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10:681–687
    [Google Scholar]
  5. Bertero M. G., Rothery R. A., Boroumand N., Palak M., Blasco F., Ginet N., Weiner J. H., Strynadka N. C. 2005; Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A. J Biol Chem 280:14836–14843
    [Google Scholar]
  6. Blaudeck N., Sprenger G. A., Freudl R., Wiegert T. 2001; Specificity of signal peptide recognition in Tat-dependent bacterial protein translocation. J Bacteriol 183:604–610
    [Google Scholar]
  7. Buchanan G., Maillard J., Nabuurs S. B., Richardson D. J., Palmer T., Sargent F. 2008; Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. FEBS Lett 582:3979–3984
    [Google Scholar]
  8. Butland G., Peregrin-Alvarez J. M., Li J., Yang W., Yang X., Canadien V., Starostine A., Richards D., Beattie B. other authors 2005; Interaction network containing conserved and essential protein complexes in Escherichia coli . Nature 433:531–537
    [Google Scholar]
  9. Chan C. S., Howell J. M., Workentine M. L., Turner R. J. 2006; Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli . Biochem Biophys Res Commun 343:244–251
    [Google Scholar]
  10. Chen Y. J., Inouye M. 2008; The intramolecular chaperone-mediated protein folding. Curr Opin Struct Biol 18:765–770
    [Google Scholar]
  11. Cherepanov P. P., Wackernagel W. 1995; Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14
    [Google Scholar]
  12. Cleary P. P., Campbell A. 1972; Deletion and complementation analysis of biotin gene cluster of Escherichia coli . J Bacteriol 112:830–839
    [Google Scholar]
  13. Cristobal S., de Gier J. W., Nielsen H., von Heijne G. 1999; Competition between Sec- and Tat-dependent protein translocation in Escherichia coli . EMBO J 18:2982–2990
    [Google Scholar]
  14. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  15. del Campillo-Campbell A., Campbell A. 1982; Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli . J Bacteriol 149:469–478
    [Google Scholar]
  16. Ezraty B., Bos J., Barras F., Aussel L. 2005; Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. J Bacteriol 187:231–237
    [Google Scholar]
  17. Fromant M., Blanquet S., Plateau P. 1995; Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal Biochem 224:347–353
    [Google Scholar]
  18. Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R. 1989; New method for generating deletions and gene replacements in Escherichia coli . J Bacteriol 171:4617–4622
    [Google Scholar]
  19. Handford J. I., Ize B., Buchanan G., Butland G. P., Greenblatt J., Emili A., Palmer T. 2009; Conserved network of proteins essential for bacterial viability. J Bacteriol 191:4732–4749
    [Google Scholar]
  20. Hatzixanthis K., Palmer T., Sargent F. 2003; A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol Microbiol 49:1377–1390
    [Google Scholar]
  21. Hatzixanthis K., Clarke T. A., Oubrie A., Richardson D. J., Turner R. J., Sargent F. 2005a; Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci U S A 102:8460–8465
    [Google Scholar]
  22. Hatzixanthis K., Richardson D. J., Sargent F. 2005b; Chaperones involved in assembly and export of N-oxide reductases. Biochem Soc Trans 33:124–126
    [Google Scholar]
  23. Hensel M., Hinsley A. P., Nikolaus T., Sawers G., Berks B. C. 1999; The genetic basis of tetrathionate respiration in Salmonella typhimurium . Mol Microbiol 32:275–287
    [Google Scholar]
  24. Hilton J. C., Temple C. A., Rajagopalan K. V. 1999; Re-design of Rhodobacter sphaeroides dimethyl sulfoxide reductase. Enhancement of adenosine N 1-oxide reductase activity. J Biol Chem 274:8428–8436
    [Google Scholar]
  25. Hinsley A. P., Stanley N. R., Palmer T., Berks B. C. 2001; A naturally occurring bacterial Tat signal peptide lacking one of the ‘invariant’ arginine residues of the consensus targeting motif. FEBS Lett 497:45–49
    [Google Scholar]
  26. Ignatova Z., Hornle C., Nurk A., Kasche V. 2002; Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem Biophys Res Commun 291:146–149
    [Google Scholar]
  27. Ize B., Stanley N. R., Buchanan G., Palmer T. 2003; Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48:1183–1193
    [Google Scholar]
  28. Jack R. L., Buchanan G., Dubini A., Hatzixanthis K., Palmer T., Sargent F. 2004; Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972
    [Google Scholar]
  29. Jormakka M., Richardson D., Byrne B., Iwata S. 2004; Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure 12:95–104
    [Google Scholar]
  30. Karimova G., Pidoux J., Ullmann A., Ladant D. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756
    [Google Scholar]
  31. Karimova G., Ullmann A., Ladant D. 2001; Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3:73–82
    [Google Scholar]
  32. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  33. Lanciano P., Vergnes A., Grimaldi S., Guigliarelli B., Magalon A. 2007; Biogenesis of a respiratory complex is orchestrated by a single accessory protein. J Biol Chem 282:17468–17474
    [Google Scholar]
  34. Luke I., Butland G., Moore K., Buchanan G., Lyall V., Fairhurst S. A., Greenblatt J. F., Emili A., Palmer T., Sargent F. 2008; Biosynthesis of the respiratory formate dehydrogenases from Escherichia coli: characterization of the FdhE protein. Arch Microbiol 190:685–696
    [Google Scholar]
  35. Martinez-Espinosa R. M., Dridge E. J., Bonete M. J., Butt J. N., Butler C. S., Sargent F., Richardson D. J. 2007; Look on the positive side! The orientation, identification and bioenergetics of ‘Archaeal’ membrane-bound nitrate reductases. FEMS Microbiol Lett 276:129–139
    [Google Scholar]
  36. Mejean V., Iobbi-Nivol C., Lepelletier M., Giordano G., Chippaux M., Pascal M. C. 1994; TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11:1169–1179
    [Google Scholar]
  37. Melville D. B. 1954; Biotin sulfoxide. J Biol Chem 208:495–501
    [Google Scholar]
  38. Parish D., Benach J., Liu G., Singarapu K. K., Xiao R., Acton T., Su M., Bansal S., Prestegard J. H. other authors 2008; Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif. J Struct Funct Genomics 9:41–49
    [Google Scholar]
  39. Pierson D. E., Campbell A. 1990; Cloning and nucleotide sequence of bisC, the structural gene for biotin sulfoxide reductase in Escherichia coli . J Bacteriol 172:2194–2198
    [Google Scholar]
  40. Pommier J., Mejean V., Giordano G., Iobbi-Nivol C. 1998; TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme in Escherichia coli . J Biol Chem 273:16615–16620
    [Google Scholar]
  41. Richardson D. J., Berks B. C., Russell D. A., Spiro S., Taylor C. J. 2001; Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58:165–178
    [Google Scholar]
  42. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sargent F. 2007a; The twin-arginine transport system: moving folded proteins across membranes. Biochem Soc Trans 35:835–847
    [Google Scholar]
  44. Sargent F. 2007b; Constructing the wonders of the bacterial world: biosynthesis of complex enzymes. Microbiology 153:633–651
    [Google Scholar]
  45. Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C., Berks B. C., Palmer T. 1998; Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640–3650
    [Google Scholar]
  46. Schubert T., Lenz O., Krause E., Volkmer R., Friedrich B. 2007; Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66:453–467
    [Google Scholar]
  47. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
    [Google Scholar]
  48. Turner R. J., Papish A. L., Sargent F. 2004; Sequence analysis of bacterial redox enzyme maturation proteins (REMPs. Can J Microbiol 50:225–238
    [Google Scholar]
  49. Vergnes A., Pommier J., Toci R., Blasco F., Giordano G., Magalon A. 2006; NarJ chaperone binds on two distinct sites of the aponitrate reductase of Escherichia coli to coordinate molybdenum cofactor insertion and assembly. J Biol Chem 281:2170–2176
    [Google Scholar]
  50. Widdick D. A., Eijlander R. T., van Dijl J. M., Kuipers O. P., Palmer T. 2008; A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. J Mol Biol 375:595–603
    [Google Scholar]
  51. Zeghouf M., Li J., Butland G., Borkowska A., Canadien V., Richards D., Beattie B., Emili A., Greenblatt J. F. 2004; Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3:463–468
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033647-0
Loading
/content/journal/micro/10.1099/mic.0.033647-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed