SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the intergenic region in Free

Abstract

SanG is a pathway-specific regulator that mainly controls the transcription of two transcriptional units involved in nikkomycin biosynthesis. SanG consists of three major functional domains: an N-terminal antibiotic regulatory protein (SARP) domain, a central ATPase domain, and a C-terminal half homologous to guanylate cyclases belonging to the LuxR family. SanG was expressed in as a C-terminally His-tagged protein. The purified SanG-His was shown to be a dimer in solution by dynamic light scattering. An electrophoretic mobility-shift assay showed that the purified SanG protein could bind to the DNA fragment containing the bidirectional promoter region. The SanG-binding sites within the bidirectional promoter region were determined by footprinting analysis and identified a consensus-directed repeat sequence 5′-CGGCAAG-3′. SanG showed significant ATPase/GTPase activity , and addition of ATP/GTP enhanced the affinity of SanG for target DNA, but ATP/GTP hydrolysis was not essential for SanG binding to the target DNA. However, real-time reverse transcription PCR showed that mutation of the ATPase/GTPase domain of SanG significantly decreased the transcriptional level of and . These results indicated that the ATPase/GTPase activity of SanG modulated the transcriptional activation of SanG target genes during nikkomycin biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033605-0
2010-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/828.html?itemId=/content/journal/micro/10.1099/mic.0.033605-0&mimeType=html&fmt=ahah

References

  1. Antón N., Mendes M. V., Martín J. F., Aparicio J. F. 2004; Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575
    [Google Scholar]
  2. Arias P., Fernández-Moreno M. A., Malpartida F. 1999; Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968
    [Google Scholar]
  3. Bate N., Stratigopoulos G., Cundliffe E. 2002; Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis. Mol Microbiol 43:449–458
    [Google Scholar]
  4. Bibb M. J. 2005; Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215
    [Google Scholar]
  5. Chater K. F., Chandra G. 2008; The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 46:1–11
    [Google Scholar]
  6. Chen Y., Wendt-Pienkowski E., Shen B. 2008; Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190:5587–5596
    [Google Scholar]
  7. Elliot M. A., Bibb M. J., Buttner M. J., Leskiw B. K. 2001; BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2) . Mol Microbiol 40:257–269
    [Google Scholar]
  8. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. 1991; The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66:769–780
    [Google Scholar]
  9. Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S. 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531
    [Google Scholar]
  10. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. 1979; An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97
    [Google Scholar]
  11. Lauer B., Russwurm R., Schwarz W., Kálmánczhelyi A., Bruntner C., Rosemeier A., Bormann C. 2001; Molecular characterization of co-transcribed genes from Streptomyces tendae Tü901 involved in the biosynthesis of the peptidyl moiety and assembly of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet 264:662–673
    [Google Scholar]
  12. Lee P. C., Umeyama T., Horinouchi S. 2002; afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2. Mol Microbiol 43:1413–1430
    [Google Scholar]
  13. Leipe D. D., Koonin E. V., Aravind L. 2004; STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28
    [Google Scholar]
  14. Li R., Liu G., Xie Z., He X., Chen W., Deng Z., Tan H. 2009a; PolY, a transcriptional regulator with ATPase activity, directly activates transcription of polR in polyoxin biosynthesis in Streptomyces cacaoi. Mol Microbiol:
  15. Li R., Xie Z., Tian Y., Yang H., Chen W., You D., Liu G., Deng Z., Tan H. 2009b; polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis. Microbiology 155:1819–1831
    [Google Scholar]
  16. Ling H., Wang G., Tian Y., Liu G., Tan H. 2007; SanM catalyzes the formation of 4-pyridyl-2-oxo-4-hydroxyisovalerate in nikkomycin biosynthesis by interacting with SanN. Biochem Biophys Res Commun 361:196–201
    [Google Scholar]
  17. Liu G., Tian Y., Yang H., Tan H. 2005; A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55:1855–1866
    [Google Scholar]
  18. Madduri K., Hutchinson C. R. 1995; Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177:1208–1215
    [Google Scholar]
  19. Madiraju M. V., Moomey M., Neuenschwander P. F., Muniruzzaman S., Yamamoto K., Grimwade J. E., Rajagopalan M. 2006; The intrinsic ATPase activity of Mycobacterium tuberculosis DnaA promotes rapid oligomerization of DnaA on oriC. Mol Microbiol 59:1876–1890
    [Google Scholar]
  20. Paget M. S., Leibovitz E., Buttner M. J. 1999; A putative two-component signal transduction system regulates sigmaE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2) . Mol Microbiol 33:97–107
    [Google Scholar]
  21. Rodríguez M., Núñez L. E., Braña A. F., Méndez C., Salas J. A., Blanco G. 2008; Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. Mol Microbiol 69:633–645
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  23. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85
    [Google Scholar]
  24. Takano E. 2006; Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294
    [Google Scholar]
  25. Tanaka A., Takano Y., Ohnishi Y., Horinouchi S. 2007; AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol 369:322–333
    [Google Scholar]
  26. Tang L., Grimm A., Zhang Y. X., Hutchinson C. R. 1996; Purification and characterization of the DNA-binding protein DnrI, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucetius. Mol Microbiol 22:801–813
    [Google Scholar]
  27. Thomsen N. D., Berger J. M. 2008; Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol 69:1071–1090
    [Google Scholar]
  28. Yamazaki H., Ohnishi Y., Horinouchi S. 2000; An A-factor-dependent extracytoplasmic function sigma factor (AdsA) that is essential for morphological development in Streptomyces griseus. J Bacteriol 182:4596–4605
    [Google Scholar]
  29. Zeng H., Tan H., Li J. 2002; Cloning and function of sanQ: a gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes. Curr Microbiol 45:175–179
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033605-0
Loading
/content/journal/micro/10.1099/mic.0.033605-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed