1887

Abstract

SanG is a pathway-specific regulator that mainly controls the transcription of two transcriptional units involved in nikkomycin biosynthesis. SanG consists of three major functional domains: an N-terminal antibiotic regulatory protein (SARP) domain, a central ATPase domain, and a C-terminal half homologous to guanylate cyclases belonging to the LuxR family. SanG was expressed in as a C-terminally His-tagged protein. The purified SanG-His was shown to be a dimer in solution by dynamic light scattering. An electrophoretic mobility-shift assay showed that the purified SanG protein could bind to the DNA fragment containing the bidirectional promoter region. The SanG-binding sites within the bidirectional promoter region were determined by footprinting analysis and identified a consensus-directed repeat sequence 5′-CGGCAAG-3′. SanG showed significant ATPase/GTPase activity , and addition of ATP/GTP enhanced the affinity of SanG for target DNA, but ATP/GTP hydrolysis was not essential for SanG binding to the target DNA. However, real-time reverse transcription PCR showed that mutation of the ATPase/GTPase domain of SanG significantly decreased the transcriptional level of and . These results indicated that the ATPase/GTPase activity of SanG modulated the transcriptional activation of SanG target genes during nikkomycin biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033605-0
2010-03-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/828.html?itemId=/content/journal/micro/10.1099/mic.0.033605-0&mimeType=html&fmt=ahah

References

  1. Antón, N., Mendes, M. V., Martín, J. F. &Aparicio, J. F. ( 2004; ). Identification of PimR asa positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186, 2567–2575.[CrossRef]
    [Google Scholar]
  2. Arias, P., Fernández-Moreno, M. A. & Malpartida,F. ( 1999; ). Characterization of the pathway-specificpositive transcriptional regulator for actinorhodin biosynthesis in Streptomycescoelicolor A3(2) as a DNA-binding protein. J Bacteriol 181, 6958–6968.
    [Google Scholar]
  3. Bate, N., Stratigopoulos, G. & Cundliffe, E. ( 2002; ). Differential roles of two SARP-encoding regulatory genesduring tylosin biosynthesis. Mol Microbiol 43, 449–458.[CrossRef]
    [Google Scholar]
  4. Bibb, M. J. ( 2005; ). Regulation of secondarymetabolism in streptomycetes. Curr Opin Microbiol 8, 208–215.[CrossRef]
    [Google Scholar]
  5. Chater, K. F. & Chandra, G. ( 2008; ). The use of the rare UUA codon to define “expression space”for genes involved in secondary metabolism, development and environmentaladaptation in Streptomyces. J Microbiol 46, 1–11.[CrossRef]
    [Google Scholar]
  6. Chen, Y., Wendt-Pienkowski, E. & Shen, B. ( 2008; ). Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin productionin Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190, 5587–5596.[CrossRef]
    [Google Scholar]
  7. Elliot, M. A., Bibb, M. J., Buttner, M. J. & Leskiw, B.K. ( 2001; ). BldD is a direct regulator of key developmentalgenes in Streptomyces coelicolor A3(2). Mol Microbiol 40, 257–269.[CrossRef]
    [Google Scholar]
  8. Fernández-Moreno, M. A., Caballero, J. L., Hopwood, D.A. & Malpartida, F. ( 1991; ). The act clustercontains regulatory and antibiotic export genes, direct targets for translationalcontrol by the bldA tRNA gene of Streptomyces. Cell 66, 769–780.[CrossRef]
    [Google Scholar]
  9. Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi,H., Shiba, T., Sakaki, Y., Hattori, M. & Omura, S. ( 2003; ). Complete genome sequence and comparative analysis of the industrialmicroorganism Streptomyces avermitilis. Nat Biotechnol 21, 526–531.[CrossRef]
    [Google Scholar]
  10. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. & Candia,O. A. ( 1979; ). An improved assay for nanomole amountsof inorganic phosphate. Anal Biochem 100, 95–97.[CrossRef]
    [Google Scholar]
  11. Lauer, B., Russwurm, R., Schwarz, W., Kálmánczhelyi,A., Bruntner, C., Rosemeier, A. & Bormann, C. ( 2001; ). Molecular characterization of co-transcribed genes from Streptomycestendae Tü901 involved in the biosynthesis of the peptidyl moietyand assembly of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet 264, 662–673.[CrossRef]
    [Google Scholar]
  12. Lee, P. C., Umeyama, T. & Horinouchi, S. ( 2002; ). afsS is a target of AfsR, a transcriptional factorwith ATPase activity that globally controls secondary metabolism in Streptomycescoelicolor A3(2). Mol Microbiol 43, 1413–1430.[CrossRef]
    [Google Scholar]
  13. Leipe, D. D., Koonin, E. V. & Aravind, L. ( 2004; ). STAND, a class of P-loop NTPases including animal and plantregulators of programmed cell death: multiple, complex domain architectures,unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343, 1–28.[CrossRef]
    [Google Scholar]
  14. Li, R., Liu, G., Xie, Z., He, X., Chen, W., Deng, Z. & Tan,H. ( 2009a; ). PolY, a transcriptional regulator withATPase activity, directly activates transcription of polR in polyoxinbiosynthesis in Streptomyces cacaoi. Mol Microbiol
    [Google Scholar]
  15. Li, R., Xie, Z., Tian, Y., Yang, H., Chen, W., You, D., Liu,G., Deng, Z. & Tan, H. ( 2009b; ). polR,a pathway-specific transcriptional regulatory gene, positively controls polyoxinbiosynthesis in Streptomyces cacaoi subsp. asoensis. Microbiology 155, 1819–1831.[CrossRef]
    [Google Scholar]
  16. Ling, H., Wang, G., Tian, Y., Liu, G. & Tan, H. ( 2007; ). SanM catalyzes the formation of 4-pyridyl-2-oxo-4-hydroxyisovaleratein nikkomycin biosynthesis by interacting with SanN. Biochem BiophysRes Commun 361, 196–201.
    [Google Scholar]
  17. Liu, G., Tian, Y., Yang, H. & Tan, H. ( 2005; ). A pathway-specific transcriptional regulatory gene for nikkomycinbiosynthesis in Streptomyces ansochromogenes that also influencescolony development. Mol Microbiol 55, 1855–1866.[CrossRef]
    [Google Scholar]
  18. Madduri, K. & Hutchinson, C. R. ( 1995; ). Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomycespeucetius. J Bacteriol 177, 1208–1215.
    [Google Scholar]
  19. Madiraju, M. V., Moomey, M., Neuenschwander, P. F., Muniruzzaman,S., Yamamoto, K., Grimwade, J. E. & Rajagopalan, M. ( 2006; ). The intrinsic ATPase activity of Mycobacterium tuberculosis DnaA promotes rapid oligomerization of DnaA on oriC. Mol Microbiol 59, 1876–1890.[CrossRef]
    [Google Scholar]
  20. Paget, M. S., Leibovitz, E. & Buttner, M. J. ( 1999; ). A putative two-component signal transduction system regulatessigmaE, a sigma factor required for normal cell wall integrity in Streptomycescoelicolor A3(2). Mol Microbiol 33, 97–107.[CrossRef]
    [Google Scholar]
  21. Rodríguez, M., Núñez, L. E., Braña,A. F., Méndez, C., Salas, J. A. & Blanco, G. ( 2008; ). Identification of transcriptional activators for thienamycinand cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. Mol Microbiol 69, 633–645.[CrossRef]
    [Google Scholar]
  22. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold SpringHarbor, NY: Cold Spring Harbor Laboratory.
  23. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K.,Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B.J. & Klenk, D. C. ( 1985; ). Measurement of proteinusing bicinchoninic acid. Anal Biochem 150, 76–85.[CrossRef]
    [Google Scholar]
  24. Takano, E. ( 2006; ). Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production anddifferentiation. Curr Opin Microbiol 9, 287–294.[CrossRef]
    [Google Scholar]
  25. Tanaka, A., Takano, Y., Ohnishi, Y. & Horinouchi, S. ( 2007; ). AfsR recruits RNA polymerase to the afsSpromoter: a model for transcriptional activation by SARPs. J MolBiol 369, 322–333.
    [Google Scholar]
  26. Tang, L., Grimm, A., Zhang, Y. X. & Hutchinson, C. R. ( 1996; ). Purification and characterization of the DNA-bindingprotein DnrI, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucetius. Mol Microbiol 22, 801–813.[CrossRef]
    [Google Scholar]
  27. Thomsen, N. D. & Berger, J. M. ( 2008; ). Structural frameworks for considering microbial protein- and nucleicacid-dependent motor ATPases. Mol Microbiol 69, 1071–1090.[CrossRef]
    [Google Scholar]
  28. Yamazaki, H., Ohnishi, Y. & Horinouchi, S. ( 2000; ). An A-factor-dependent extracytoplasmic function sigma factor (AdsA)that is essential for morphological development in Streptomyces griseus. J Bacteriol 182, 4596–4605.[CrossRef]
    [Google Scholar]
  29. Zeng, H., Tan, H. & Li, J. ( 2002; ).Cloning and function of sanQ: a gene involved in nikkomycin biosynthesisof Streptomyces ansochromogenes. Curr Microbiol 45, 175–179.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033605-0
Loading
/content/journal/micro/10.1099/mic.0.033605-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error