1887

Abstract

PagR is a transcriptional repressor in that controls the chromosomal S-layer genes and , and downregulates the protective antigen gene by direct binding to their promoter regions. The PagR protein sequence is similar to those of members of the ArsR repressor family involved in the repression of arsenate-resistance genes in numerous bacteria. The crystal structure of PagR was solved using multi-wavelength anomalous diffraction (MAD) techniques and was refined with 1.8 å resolution diffraction data. The PagR molecules form dimers, as observed in all SmtB/ArsR repressor family proteins. In the crystal lattice four PagR dimers pack together to form an inactive octamer. Model-building studies suggest that the dimer binds to a DNA duplex with a bend of around 4 °.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033548-0
2010-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/385.html?itemId=/content/journal/micro/10.1099/mic.0.033548-0&mimeType=html&fmt=ahah

References

  1. Anderson W. F., Ohlendorf D. H., Takeda Y., Matthews B. W. 1981; Structure of the cro repressor from bacteriophage lambda and its interaction with DNA. Nature 290:754–758
    [Google Scholar]
  2. Beamer L. J., Pabo C. O. 1992; Refined 1.8 Å crystal structure of the lambda repressor-operator complex. J Mol Biol 227:177–196
    [Google Scholar]
  3. Brunger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M. other authors 1998; Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54:905–921
    [Google Scholar]
  4. Busenlehner L. S., Cosper N. J., Scott R. A., Rosen B. P., Wong M. D., Giedroc D. P. 2001; Spectroscopic properties of the metalloregulatory Cd(II) and Pb(II) sites of S. aureus pI258 CadC. Biochemistry 40:4426–4436
    [Google Scholar]
  5. Busenlehner L. S., Apuy J. L., Giedroc D. P. 2002; Characterization of a metalloregulatory bismuth(III) site in Staphylococcus aureus pI258 CadC repressor. J Biol Inorg Chem 7:551–559
    [Google Scholar]
  6. Busenlehner L. S., Pennella M. A., Giedroc D. P. 2003; The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143
    [Google Scholar]
  7. Cook W. J., Kar S. R., Taylor K. B., Hall L. M. 1998; Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins. J Mol Biol 275:337–346
    [Google Scholar]
  8. Dodd I. B., Egan J. B. 1990; Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026
    [Google Scholar]
  9. Eicken C., Pennella M. A., Chen X., Koshlap K. M., VanZile M. L., Sacchettini J. C., Giedroc D. P. 2003; A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins. J Mol Biol 333:683–695
    [Google Scholar]
  10. Hadjifrangiskou M., Koehler T. M. 2008; Intrinsic curvature associated with the coordinately regulated anthrax toxin gene promoters. Microbiology 154:2501–2512
    [Google Scholar]
  11. Helgason E., Okstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolsto A. B. 2000; Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630
    [Google Scholar]
  12. Hoffmaster A. R., Koehler T. M. 1999; Autogenous regulation of the Bacillus anthracis pag operon. J Bacteriol 181:4485–4492
    [Google Scholar]
  13. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. 1991; Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119
    [Google Scholar]
  14. Kern J. W., Schneewind O. 2008; BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol Microbiol 68:504–515
    [Google Scholar]
  15. Leslie A. G. 2006; The integration of macromolecular diffraction data. Acta Crystallogr D Biol Crystallogr 62:48–57
    [Google Scholar]
  16. Maris A. E., Sawaya M. R., Kaczor-Grzeskowiak M., Jarvis M. R., Bearson S. M., Kopka M. L., Schroder I., Gunsalus R. P., Dickerson R. E. 2002; Dimerization allows DNA target site recognition by NarL response regulator. Nat Struct Biol 9:771–778
    [Google Scholar]
  17. Mignot T., Mesnage S., Couture-Tosi E., Mock M., Fouet A. 2002; Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol Microbiol 43:1615–1627
    [Google Scholar]
  18. Mignot T., Mock M., Fouet A. 2003; A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol Microbiol 47:917–927
    [Google Scholar]
  19. Otwinowski Z., Minor W. 1997; Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326
    [Google Scholar]
  20. Schultz S. C., Shields G. C., Steitz T. A. 1991; Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253:1001–1007
    [Google Scholar]
  21. Terwilliger T. C. 2003; SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol 374:22–37
    [Google Scholar]
  22. Xu C., Shi W., Rosen B. P. 1996; The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271:2427–2432
    [Google Scholar]
  23. Ye J., Kandegedara A., Martin P., Rosen B. P. 2005; Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J Bacteriol 187:4214–4221
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033548-0
Loading
/content/journal/micro/10.1099/mic.0.033548-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error