1887

Abstract

Device-associated microbial growth, including biofilms, represents more than half of all human microbial infections and, despite a relatively small risk of implant-associated diseases, this type of infection usually leads to high morbidity, increased health-care costs and prolonged antimicrobial therapy. Animal models are needed to elucidate the complex host–pathogen interactions that occur during the development of attached and structured biofilm populations. We describe here a new model to study biofilm, based on the avascular implantation of small catheters in rats. Polyurethane biomaterials challenged with cells were placed underneath the skin of immunosuppressed animals following only minor surgery. The model allowed the study of up to ten biofilms at once, and the recovery of mature biofilms from 2 days after implantation. The adhering inoculum was adjusted to the standard threshold of positive diagnosis of fungal infection in materials recovered from patients. Wild-type biofilms were mainly formed of hyphal cells, and they were unevenly distributed across the catheter length as observed in infected materials in clinical cases. The hyphal multilayered structure of the biofilms of wild-type strains was observed by confocal microscopy and compared to the monolayer of yeast or hyphal cells of two well-known biofilm-deficient strains, ΔΔ ΔΔ and ΔΔ, respectively. The subcutaneous biofilm model relies on the use of implanted catheters with accessible, fast and minor surgery to the animals. This model can be used to characterize the ability of antimicrobial agents to eliminate biofilms, and to evaluate the prophylactic effect of antifungal drugs and biomaterial coatings.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033530-0
2010-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/909.html?itemId=/content/journal/micro/10.1099/mic.0.033530-0&mimeType=html&fmt=ahah

References

  1. Anderson J. M., Rodriguez A., Chang D. T. 2008; Foreign body reaction to biomaterials. Semin Immunol 20:86–100
    [Google Scholar]
  2. Andes D., Nett J., Oschel P., Albrecht R., Marchillo K., Pitula A. 2004; Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72:6023–6031
    [Google Scholar]
  3. Bastidas R. J., Heitman J., Cardenas M. E. 2009; The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 5:e1000294
    [Google Scholar]
  4. Biswas S., Van Dijck P., Datta A. 2007; Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71:348–376
    [Google Scholar]
  5. Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. 2001; Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J Bacteriol 183:5385–5394
    [Google Scholar]
  6. Davis D., Edwards J. Jr, Mitchell A. P., Ibrahim A. S. 2000; Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68:5953–5959
    [Google Scholar]
  7. Douglas L. J. 2003; Candida biofilms and their role in infection. Trends Microbiol 11:30–36
    [Google Scholar]
  8. Ferreira J. A., Carr J. H., Starling C. E., de Resende M. A., Donlan R. M. 2009; Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. Antimicrob Agents Chemother 53:4377–4384
    [Google Scholar]
  9. García-Sánchez S., Aubert S., Iraqui I., Janbon G., Ghigo J. M., d'Enfert C. 2004; Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545
    [Google Scholar]
  10. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182
    [Google Scholar]
  11. Green C. B., Zhao X., Yeater K. M., Hoyer L. L. 2005; Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 151:1051–1060
    [Google Scholar]
  12. Hawser S. P., Baillie G. S., Douglas L. J. 1998; Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47:253–256
    [Google Scholar]
  13. Higgins D. M., Basaraba R. J., Hohnbaum A. C., Lee E. J., Grainger D. W., Gonzalez-Juarrero M. 2009; Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol 175:161–170
    [Google Scholar]
  14. Kojic E. M., Darouiche R. O. 2004; Candida infections on medical devices. Clin Microbiol Rev 17:255–267
    [Google Scholar]
  15. Kuhn D. M., Ghannoum M. A. 2004; Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin Investig Drugs 5:186–197
    [Google Scholar]
  16. Lazzell A. L., Chaturvedi A. K., Pierce C. G., Prasad D., Uppuluri P., Lopez-Ribot J. L. 2009; Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemother 64:567–570
    [Google Scholar]
  17. Li F., Svarovsky M. J., Karlsson A. J., Wagner J. P., Marchillo K., Oshel P., Andes D., Palecek S. P. 2007; Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 6:931–939
    [Google Scholar]
  18. Lo H.-J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949
    [Google Scholar]
  19. Martinez L. R., Casadevall A. 2006; Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50:1021–1033
    [Google Scholar]
  20. Massonet C., Pintens V., Merckx R., Anné J., Lammertyn E., Van Eldere J. 2006; Effect of iron on the expression of sirR and sitABC in biofilm-associated Staphylococcus epidermidis. BMC Microbiol 6:103
    [Google Scholar]
  21. Mermel L. A., Farr B. M., Sherertz R. J., Raad I. I., O'Grady N., Harris J. S., Craven D. E. Infectious Diseases Society of America, American College of Critical Care Medicine, Society for Healthcare Epidemiology of America 2001; Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 32:1249–1272
    [Google Scholar]
  22. Mukherjee P. K., Long L., Kim H. G., Ghannoum M. A. 2009; Amphotericin B lipid complex is efficacious in the treatment of Candida albicans biofilms using a model of catheter-associated Candida biofilms. Int J Antimicrob Agents 33:149–153
    [Google Scholar]
  23. Murillo L. A., Newport G., Lan C. Y., Habelitz S., Dungan J., Agabian N. M. 2005; Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell 4:1562–1573
    [Google Scholar]
  24. Nett J. E., Lepak A. J., Marchillo K., Andes D. R. 2009; Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis 200:307–313
    [Google Scholar]
  25. Nobile C. J., Mitchell A. P. 2005; Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155
    [Google Scholar]
  26. Nobile C. J., Mitchell A. P. 2006; Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8:1382–1391
    [Google Scholar]
  27. Nobile C. J., Andes D. R., Nett J. E., Smith F. J., Yue F., Phan Q. T., Edwards J. E. Jr, Filler S. G., Mitchell A. P. 2006; Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2:e63
    [Google Scholar]
  28. Paulitsch A. H., Willinger B., Zsalatz B., Stabentheiner E., Marth E., Buzina W. 2009; In-vivo Candida biofilms in scanning electron microscopy. Med Mycol1–7
    [Google Scholar]
  29. Ramage G., Vandewalle K., Wickes B. L., Lopez-Ribot J. L. 2001; Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 18:163–170
    [Google Scholar]
  30. Ramage G., VandeWalle K., Lopez-Ribot J. L., Wickes B. L. 2002; The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 214:95–100
    [Google Scholar]
  31. Ramage G., Martínez J. P., López-Ribot J. L. 2006; Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986
    [Google Scholar]
  32. Schinabeck M. K., Long L. A., Hossain M. A., Chandra J., Mukherjee P. K., Mohamed S., Ghannoum M. A. 2004; Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48:1727–1732
    [Google Scholar]
  33. Sellam A., Al-Niemi T., McInnerney K., Brumfield S., Nantel A., Suci P. A. 2009; A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol 9:25
    [Google Scholar]
  34. Seneviratne C. J., Jin L., Samaranayake L. P. 2008; Biofilm lifestyle of Candida: a mini review. Oral Dis 14:582–590
    [Google Scholar]
  35. Van Wijngaerden E., Peetermans W. E., Vandersmissen J., Van Lierde S., Bobbaers H., Van Eldere J. 1999; Foreign body infection: a new rat model for prophylaxis and treatment. J Antimicrob Chemother 44:669–674
    [Google Scholar]
  36. Vasquez-Torres A., Balish E. 1997; Macrophages in resistance to candidiasis. Microbiol Mol Biol Rev 61:170–192
    [Google Scholar]
  37. Zhao X., Daniels K. J., Oh S. H., Green C. B., Yeater K. M., Soll D. R., Hoyer L. L. 2006; Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152:2287–2299
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033530-0
Loading
/content/journal/micro/10.1099/mic.0.033530-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error