1887

Abstract

Although dermatophytes are the most common agents of superficial mycoses in humans and animals, the molecular basis of the pathogenicity of these fungi is largely unknown. digestion of keratin by dermatophytes is associated with the secretion of multiple proteases, which are assumed to be responsible for their particular specialization to colonize and degrade keratinized host structures during infection. To investigate the role of individual secreted proteases in dermatophytosis, a guinea pig infection model was established for the zoophilic dermatophyte , which causes highly inflammatory cutaneous infections in humans and rodents. By use of a cDNA microarray covering approximately 20–25 % of the genome and containing sequences of at least 23 protease genes, we revealed a distinct protease gene expression profile in the fungal cells, which was surprisingly different from the pattern elicited during growth on keratin. Instead of the major -expressed proteases, others were activated specifically during infection. These enzymes are therefore suggested to fulfil important functions that are not exclusively associated with the degradation of keratin. Most notably, the gene encoding the serine protease subtilisin 6, which is a known major allergen in the related dermatophyte and putatively linked to host inflammation, was found to be the most strongly upregulated gene during infection. In addition, our approach identified other candidate pathogenicity-related factors in , such as genes encoding key enzymes of the glyoxylate cycle and an opsin-related protein. Our work provides what we believe to be the first broad-scale gene expression profile in human pathogenic dermatophytes during infection, and points to putative virulence-associated mechanisms that make these micro-organisms the most successful aetiological agents of superficial mycoses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033464-0
2010-03-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/884.html?itemId=/content/journal/micro/10.1099/mic.0.033464-0&mimeType=html&fmt=ahah

References

  1. Brouta F., Descamps F., Monod M., Vermout S., Losson B., Mignon B. 2002; Secreted metalloprotease gene family of Microsporum canis. Infect Immun 70:5676–5683
    [Google Scholar]
  2. Brown L. S. 2004; Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 3:555–565
    [Google Scholar]
  3. Delgado N., Hung C. Y., Tarcha E., Gardner M. J., Cole G. T. 2004; Profiling gene expression in Coccidioides posadasii. Med Mycol 42:59–71
    [Google Scholar]
  4. Descamps F., Brouta F., Monod M., Zaugg C., Baar D., Losson B., Mignon B. 2002; Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol 119:830–835
    [Google Scholar]
  5. Fachin A. L., Ferreira-Nozawa M. S., Maccheroni W. Jr, Martinez-Rossi N. M. 2006; Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol 55:1093–1099
    [Google Scholar]
  6. Ferreira-Nozawa M. S., Silveira H. C., Ono C. J., Fachin A. L., Rossi A., Martinez-Rossi N. M. 2006; The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol 44:641–645
    [Google Scholar]
  7. Fumeaux J., Mock M., Ninet B., Jan I., Bontems O., Léchenne B., Lew D., Panizzon R. G., Jousson O., Monod M. 2004; First report of Arthroderma benhamiae in Switzerland. Dermatology 208:244–250
    [Google Scholar]
  8. Giddey K., Monod M., Barblan J., Potts A., Waridel P., Zaugg C., Quadroni M. 2007; Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res 6:3081–3092
    [Google Scholar]
  9. Hellemans J., Mortier G., De Paepe A., Speleman F., Vandesompele J. 2007; qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19
    [Google Scholar]
  10. Jousson O., Lechenne B., Bontems O., Capoccia S., Mignon B., Barblan J., Quadroni M., Monod M. 2004a; Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology 150:301–310
    [Google Scholar]
  11. Jousson O., Lechenne B., Bontems O., Mignon B., Reichard U., Barblan J., Quadroni M., Monod M. 2004b; Secreted subtilisin gene family in Trichophyton rubrum. Gene 339:79–88
    [Google Scholar]
  12. Liu T., Zhang Q., Wang L., Yu L., Leng W., Yang J., Chen L., Peng J., Ma L. other authors 2007; The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genomics 8:100
    [Google Scholar]
  13. Lorenz M. C., Fink G. R. 2001; The glyoxylate cycle is required for fungal virulence. Nature 412:83–86
    [Google Scholar]
  14. McKinney J. D., Honer zu Bentrup K., Munoz-Elias E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G. 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738
    [Google Scholar]
  15. Mignon B. R., Leclipteux T., Focant C., Nikkels A. J., Pierard G. E., Losson B. J. 1999; Humoral and cellular immune response to a crude exo-antigen and purified keratinase of Microsporum canis in experimentally infected guinea pigs. Med Mycol 37:123–129
    [Google Scholar]
  16. Monod M. 2008; Secreted proteases from dermatophytes. Mycopathologia 166:285–294
    [Google Scholar]
  17. Monod M., Lechenne B., Jousson O., Grand D., Zaugg C., Stocklin R., Grouzmann E. 2005; Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology 151:145–155
    [Google Scholar]
  18. Naglik J. R., Challacombe S. J., Hube B. 2003; Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428
    [Google Scholar]
  19. Schöbel F., Ibrahim-Granet O., Ave P., Latge J. P., Brakhage A. A., Brock M. 2007; Aspergillus fumigatus does not require fatty acid metabolism via isocitrate lyase for development of invasive aspergillosis. Infect Immun 75:1237–1244
    [Google Scholar]
  20. Smyth G. K. 2004; Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3
    [Google Scholar]
  21. Smyth G. K., Speed T. 2003; Normalization of cDNA microarray data. Methods 31:265–273
    [Google Scholar]
  22. Staib P., Kretschmar M., Nichterlein T., Hof H., Morschhäuser J. 2000; Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci U S A 97:6102–6107
    [Google Scholar]
  23. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002; Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034
    [Google Scholar]
  24. Vermout S., Tabart J., Baldo A., Mathy A., Losson B., Mignon B. 2008; Pathogenesis of dermatophytosis. Mycopathologia 166:267–275
    [Google Scholar]
  25. Weitzman I., Summerbell R. C. 1995; The dermatophytes. Clin Microbiol Rev 8:240–259
    [Google Scholar]
  26. White T. C., Oliver B. G., Graser Y., Henn M. R. 2008; Generating and testing molecular hypotheses in the dermatophytes. Eukaryot Cell 7:1238–1245
    [Google Scholar]
  27. Woodfolk J. A. 2005; Allergy and dermatophytes. Clin Microbiol Rev 18:30–43
    [Google Scholar]
  28. Woodfolk J. A., Wheatley L. M., Piyasena R. V., Benjamin D. C., Platts-Mills T. A. 1998; Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem 273:29489–29496
    [Google Scholar]
  29. Yamada T., Makimura K., Abe S. 2006; Isolation, characterization, and disruption of dnr1, the areA/ nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med Mycol 44:243–252
    [Google Scholar]
  30. Yang Y. H., Dudoit S., Luu P., Lin D. M., Peng V., Ngai J., Speed T. P. 2002; Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15
    [Google Scholar]
  31. Yu L., Zhang W., Wang L., Yang J., Liu T., Peng J., Leng W., Chen L., Li R., Jin Q. 2007; Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother 51:144–153
    [Google Scholar]
  32. Zaugg C., Jousson O., Lechenne B., Staib P., Monod M. 2008; Trichophyton rubrum secreted and membrane-associated carboxypeptidases. Int J Med Microbiol 298:669–682
    [Google Scholar]
  33. Zaugg C., Monod M., Weber J., Harshman K., Pradervand S., Thomas J., Bueno M., Giddey K., Staib P. 2009; Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins. Eukaryot Cell 8:241–250
    [Google Scholar]
  34. Zhang W., Yu L., Leng W., Wang X., Wang L., Deng X., Yang J., Liu T., Peng J. other authors 2007; cDNA microarray analysis of the expression profiles of Trichophyton rubrum in response to novel synthetic fatty acid synthase inhibitor PHS11A. Fungal Genet Biol 44:1252–1261
    [Google Scholar]
  35. Zhang W., Yu L., Yang J., Wang L., Peng J., Jin Q. 2009; Transcriptional profiles of response to terbinafine in Trichophyton rubrum. Appl Microbiol Biotechnol 82:1123–1130
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.033464-0
Loading
/content/journal/micro/10.1099/mic.0.033464-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF

Supplementary material 6

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error