1887

Abstract

is the major aetiological agent of chronic pulmonary infections in patients with cystic fibrosis (CF). The metabolic pathways utilized by during these infections, which can persist for decades, are poorly understood. Several lines of evidence suggest that the glyoxylate pathway, which utilizes acetate or fatty acids to replenish intermediates of the tricarboxylic acid cycle, is an important metabolic pathway for adapted to the CF lung. Isocitrate lyase (ICL) is one of two major enzymes of the glyoxylate pathway. In a previous study, we determined that is dependent upon , which encodes ICL, to cause disease on alfalfa seedlings and in rat lungs. Expression of in PAO1, a isolate associated with acute infection, is regulated by carbon sources that utilize the glyoxyate pathway. In contrast, expression of in FRD1, a CF isolate, is constitutively upregulated. Moreover, this deregulation of occurs in other isolates associated with chronic infection, suggesting that high ICL activity facilitates adaptation of to the CF lung. Complementation of FRD1 with a PAO1 clone bank identified that negatively regulates . However, the deregulation of in FRD1 was not due to a knockout mutation of . Regulation of the glyoxylate pathway by RpoN is likely to be indirect, and represents a unique regulatory role for this sigma factor in bacterial metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033381-0
2010-04-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1201.html?itemId=/content/journal/micro/10.1099/mic.0.033381-0&mimeType=html&fmt=ahah

References

  1. Barth A. L., Pitt T. L.. 1996; The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. J Med Microbiol45:110–119
    [Google Scholar]
  2. Carterson A. J., Morici L. A., Jackson D. W., Frisk A., Lizewski S. E., Jupiter R., Simpson K., Kunz D. A., Davis S. H.. other authors 2004; The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J Bacteriol186:6837–6844
    [Google Scholar]
  3. Collier D. N., Hager P. W., Phibbs P. V. Jr. 1996; Catabolite repression control in the pseudomonads. Res Microbiol147:551–561
    [Google Scholar]
  4. Davis R. W., Botstein D., Roth J. R.. 1980; Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  5. Diaz-Perez A. L., Roman-Doval C., Diaz-Perez C., Cervantes C., Sosa-Aquirre C. R., Lopez-Meza J. E., Campos-Garcia J.. 2007; Identification of the aceA gene encoding isocitrate lyase required for the growth of Pseudomonas aeruginosa on acetate, acyclic terpenes and leucine. FEMS Microbiol Lett269:309–316
    [Google Scholar]
  6. Fang F. C., Libby S. J., Castor M. E., Fung A. M.. 2005; Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect Immun73:2547–2549
    [Google Scholar]
  7. Fellay R., Frey J., Krisch H.. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene52:147–154
    [Google Scholar]
  8. Ferguson M. W., Maxwell J. A., Vincent T. S., da Silva J., Olson J. C.. 2001; Comparison of the exoS gene and protein expression in soil and clinical isolates of Pseudomonas aeruginosa. Infect Immun69:2198–2210
    [Google Scholar]
  9. Goldberg J. B., Ohman D. E.. 1984; Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol158:1115–1121
    [Google Scholar]
  10. Goodman A. L., Kulasekara B., Rietsch A., Boyd D., Smith R. S., Lory S.. 2004; A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell7:745–754
    [Google Scholar]
  11. Gui L., Sunnarborg A., Pan B., LaPorte D. C.. 1996; Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol178:321–324
    [Google Scholar]
  12. Hagins J. M., Locy R., Silo-Suh L.. 2009; Isocitrate lyase supplies precursors for hydrogen cyanide production in a cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol191:6335–6339
    [Google Scholar]
  13. Hatch R. A., Schiller N. L.. 1998; Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob Agents Chemother42:974–977
    [Google Scholar]
  14. Hendrickson E. L., Guevera P., Penaloza-Vazquez A., Shao J., Bender C., Ausubel F. M.. 2000; Virulence of the phytopathogen Pseudomonas syringae pv. Maculicola is rpoN dependent. J Bacteriol182:3498–3507
    [Google Scholar]
  15. Hendrickson E. L., Plotnikova J., Mahajan-Miklos S., Rahme L. G., Ausubel F. M.. 2001; Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J Bacteriol183:7126–7134
    [Google Scholar]
  16. Heurlier K., Denervaud V., Pessi G., Reimmann C., Haas D.. 2003; Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol185:2227–2235
    [Google Scholar]
  17. Hoiby N.. 1998; Pseudomonas in Cystic Fibrosis: Past, Present and Future. London: Cystic Fibrosis Trust;
  18. Holloway B. W., Krishnapillai V., Morgan A. F.. 1979; Chromosomal genetics of Pseudomonas. Microbiol Rev43:73–102
    [Google Scholar]
  19. Honer Zu Bentrup K., Miczak A., Swenson D. L., Russell D. G.. 1999; Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol181:7161–7167
    [Google Scholar]
  20. Hoyt J. C., Johnson K. E., Reeves H. C.. 1991; Purification and characterization of Acinetobacter calcoaceticus isocitrate lyase. J Bacteriol173:6844–6848
    [Google Scholar]
  21. Kimbara K., Chakrabarty A. M.. 1989; Control of alginate synthesis in Pseudomonas aeruginosa: regulation of the algR1 gene. Biochem Biophys Res Commun164:601–608
    [Google Scholar]
  22. Kohler T., Harayama S., Ramos J. L., Timmis K. N.. 1989; Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions. J Bacteriol171:4326–4333
    [Google Scholar]
  23. Kretzschmar U., Khodaverdi V., Jeoung J. H., Gorisch H.. 2008; Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa. Arch Microbiol190:151–158
    [Google Scholar]
  24. Kumar R., Bhakuni V.. 2008; Mycobacterium tuberculosis isocitrate lyase (MtbIcl): role of divalent cations in modulation of functional and structural properties. Proteins72:892–900
    [Google Scholar]
  25. Lindsey T. L., Hagins J. M., Sokol P. A., Silo-Suh L.. 2008; Virulence determinants from a cystic fibrosis isolate of Pseudomonas aeruginosa include isocitrate lyase. Microbiology154:1616–1627
    [Google Scholar]
  26. MacKintosh C., Nimmo H. G.. 1988; Purification and regulatory properties of isocitrate lyase from Escherichia coli ML308. Biochem J250:25–31
    [Google Scholar]
  27. Mahenthiralingam E., Campbell M. E., Speert D. P.. 1994; Non-motility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun62:596–605
    [Google Scholar]
  28. McKinney J. D., Honer zu Bentrup K., Munoz-Elias E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G.. 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature406:735–738
    [Google Scholar]
  29. Miller J. H.. 1972; Experiments in Molecular Genetics. Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Nguyen D., Singh P. K.. 2006; Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc Natl Acad Sci U S A103:8305–8306
    [Google Scholar]
  31. Ohman D. E., Chakrabarty A. M.. 1981; Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun33:142–148
    [Google Scholar]
  32. Oliver A. M., Weir D. M.. 1985; The effect of Pseudomonas alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin Exp Immunol59:190–196
    [Google Scholar]
  33. Palmer K. L., Mashburn L. M., Singh P. K., Whiteley M.. 2005; Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol187:5267–5277
    [Google Scholar]
  34. Pedersen S. S., Kharazmi A., Espersen F., Hoiby N.. 1990; Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun58:3363–3368
    [Google Scholar]
  35. Reinscheid D. J., Eikmanns B. J., Sahm H.. 1994; Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J Bacteriol176:3474–3483
    [Google Scholar]
  36. Ryall B., Davies J. C., Wilson R., Shoemark A., Williams H. D.. 2008; Pseudomonas aeruginosa, cyanide accumulation and lung function in CF and non-CF bronchiectasis patients. Eur Respir J32:740–747
    [Google Scholar]
  37. Sanderson K., Wescombe L., Kirov S. M., Champion A., Reid D. W.. 2008; Bacterial cyanogenesis occurs in the cystic fibrosis lung. Eur Respir J32:329–333
    [Google Scholar]
  38. Schweizer H. D.. 1993; Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques15:831–833
    [Google Scholar]
  39. Silo-Suh L., Suh S. J., Sokol P. A., Ohman D. E.. 2002; A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc Natl Acad Sci U S A99:15699–15704
    [Google Scholar]
  40. Silo-Suh L., Suh S. J., Phibbs P. V., Ohman D. E.. 2005; Adaptations of Pseudomonas aeruginosa to the cystic fibrosis lung environment can include deregulation of zwf, encoding glucose-6-phosphate dehydrogenase. J Bacteriol187:7561–7568
    [Google Scholar]
  41. Simpson J. A., Smith S. E., Dean R. T.. 1989; Scavenging by alginate of free radicals released by macrophages. Free Radic Biol Med6:347–353
    [Google Scholar]
  42. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P.. other authors 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A103:8487–8492
    [Google Scholar]
  43. Son M. S., Matthews W. J. Jr, Kang Y., Nguyen D. T., Hoang T. T.. 2007; In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun75:5313–5324
    [Google Scholar]
  44. Suh S. J., Silo-Suh L., Woods D. E., Hassett D. J., West S. E., Ohman D. E.. 1999; Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol181:3890–3897
    [Google Scholar]
  45. Suh S. J., Silo-Suh L., Ohman D. E.. 2004; Development of tools for the genetic manipulation of Pseudomonas aeruginosa. J Microbiol Methods58:203–212
    [Google Scholar]
  46. Totten P. A., Lara J. C., Lory S.. 1990; The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol172:389–396
    [Google Scholar]
  47. van Heeckeren A. M., Schluchter M. D.. 2002; Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Anim36:291–312
    [Google Scholar]
  48. van Schaik E. J., Tom M., Woods D. E.. 2009; Burkholderia pseudomallei isocitrate lyase is a persistence factor in pulmonary melioidosis: implications for the development of isocitrate lyase inhibitors as novel antimicrobials. Infect Immun77:4275–4283
    [Google Scholar]
  49. Viducic D., Ono T., Murakami K., Katakami M., Susilowati H., Miyake Y.. 2007; rpoN gene of Pseudomonas aeruginosa alters its susceptibility to quinolones and carbapenems. Antimicrob Agents Chemother51:1455–1462
    [Google Scholar]
  50. Webb J. S., Thompson L. S., James S., Charlton T., Tolker-Nielsen T., Koch B., Givskov M., Kjelleberg S.. 2003; Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol185:4585–4592
    [Google Scholar]
  51. Wozniak D. J., Ohman D. E.. 1994; Transcriptional analysis of algR, algB and algD in Pseudomonas aeruginosa reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol176:6007–6014
    [Google Scholar]
  52. Xie Z. D., Hershberger C. D., Shankar S., Ye R. W., Chakrabarty A. M.. 1996; Sigma factor–anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA. J Bacteriol178:4990–4996
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033381-0
Loading
/content/journal/micro/10.1099/mic.0.033381-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error