1887

Abstract

Acyl carrier protein (ACP) is a universal and highly conserved carrier of acyl intermediates during fatty acid biosynthesis. The molecular mechanisms of regulation of the structural gene, as well as the function of its gene product, are poorly characterized in and other Gram-positive organisms. Here, we report that transcription of takes place from two different promoters: P and P. Expression of from P is coordinated with a cluster of genes involved in lipid synthesis (the operon); the operon consists of ----. P is located immediately upstream of the coding sequence, and is necessary and sufficient for normal fatty acid synthesis. We also report that is essential for growth and differentiation, and that ACP localizes in the mother-cell compartment of the sporangium during spore formation. These results provide the first detailed characterization of the expression of the ACP-encoding gene in a Gram-positive bacterium, and highlight the importance of this protein in physiology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033316-0
2010-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/484.html?itemId=/content/journal/micro/10.1099/mic.0.033316-0&mimeType=html&fmt=ahah

References

  1. Aguena M., Spira B. 2003; RT-PCR of long prokaryotic operon transcripts without DNase treatment. J Microbiol Methods 55:419–423
    [Google Scholar]
  2. Arabolaza A. L., Nakamura A., Pedrido M. E., Martelotto L., Orsaria L., Grau R. R. 2003; Characterization of a novel inhibitory feedback of the anti-anti-sigma SpoIIAA on Spo0A activation during development in Bacillus subtilis. Mol Microbiol 47:1251–1263
    [Google Scholar]
  3. Battesti A., Bouveret E. 2008; Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein–SpoT interaction. J Bacteriol 191:616–624
    [Google Scholar]
  4. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  6. Byers D. M., Gong H. 2007; Acyl carrier protein: structure–function relationships in a conserved multifunctional protein family. Biochem Cell Biol 85:649–662
    [Google Scholar]
  7. Calderone C. T., Kowtoniuk W. E., Kelleher N. L., Walsh C. T., Dorrestein P. C. 2006; Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl- S-carrier proteins in the pksX pathway of Bacillus subtilis. Proc Natl Acad Sci U S A 103:8977–8982
    [Google Scholar]
  8. Cronan J. E., Rock C. O. 1996; Biosynthesis of membrane lipids. In Escherichia coli and Salmonella: Cellular and Molecular Biology. , 2nd edn. pp 612–636 Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
  9. de Hoon M. J., Makita Y., Nakai K., Miyano S. 2005; Prediction of transcriptional terminators in Bacillus subtilis and related species. PLOS Comput Biol 1:e25
    [Google Scholar]
  10. De Lay N. R., Cronan J. E. 2006; Gene-specific random mutagenesis of Escherichia coli in vivo: isolation of temperature-sensitive mutations in the acyl carrier protein of fatty acid synthesis. J Bacteriol 188:287–296
    [Google Scholar]
  11. De Lay N. R., Cronan J. E. 2007; In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis. J Biol Chem 282:20319–20328
    [Google Scholar]
  12. de Mendoza D., Schujman G. E., Aguilar P. S. 2002; Biosynthesis and function of membrane lipids. In Bacillus Subtilis and its Closest Relatives: From Genes to Cells. pp 43–55 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
  13. Fujita M., Losick R. 2002; An investigation into the compartmentalization of the sporulation transcription factor sigmaE in Bacillus subtilis. Mol Microbiol 43:27–38
    [Google Scholar]
  14. Fujita M., Losick R. 2003; The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev 17:1166–1174
    [Google Scholar]
  15. Guerout-Fleury A. M., Frandsen N., Stragier P. 1996; Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57–61
    [Google Scholar]
  16. Gully D., Moinier D., Loiseau L., Bouveret E. 2003; New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification. FEBS Lett 548:90–96
    [Google Scholar]
  17. Harwood C. R., Cutting S. M. (editors) 1990 Molecular Biology Methods for Bacillus Chichester, UK: Wiley;
  18. Jarmer H., Larsen T. S., Krogh A., Saxild H. H., Brunak S., Knudsen S. 2001; Sigma A recognition sites in the Bacillus subtilis genome. Microbiology 147:2417–2424
    [Google Scholar]
  19. Lu Y. J., Rock C. O. 2006; Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae. Mol Microbiol 59:551–566
    [Google Scholar]
  20. Marquis K. A., Burton B. M., Nollmann M., Ptacin J. L., Bustamante C., Ben Yehuda S., Rudner D. Z. 2008; SpoIIIE strips proteins off the DNA during chromosome translocation. Genes Dev 22:1786–1795
    [Google Scholar]
  21. Marrakchi H., Choi K. H., Rock C. O. 2002; A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816
    [Google Scholar]
  22. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  23. Molle V., Fujita M., Jensen S. T., Eichenberger P., Gonzalez-Pastor J. E., Liu J. S., Losick R. 2003; The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50:1683–1701
    [Google Scholar]
  24. Mootz H. D., Finking R., Marahiel M. A. 2001; 4′-Phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem 276:37289–37298
    [Google Scholar]
  25. Morbidoni H. R., de Mendoza D., Cronan J. E. Jr 1996; Bacillus subtilis acyl carrier protein is encoded in a cluster of lipid biosynthesis genes. J Bacteriol 178:4794–4800
    [Google Scholar]
  26. Opdyke J. A., Scott J. R., Moran C. P. Jr 2001; A secondary RNA polymerase sigma factor from Streptococcus pyogenes. Mol Microbiol 42:495–502
    [Google Scholar]
  27. Rawlings M., Cronan J. E. Jr 1992; The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J Biol Chem 267:5751–5754
    [Google Scholar]
  28. Raya R., Bardowski J., Andersen P. S., Ehrlich S. D., Chopin A. 1998; Multiple transcriptional control of the Lactococcus lactis trp operon. J Bacteriol 180:3174–3180
    [Google Scholar]
  29. Schaeffer P., Millet J., Aubert J. P. 1965; Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A 54:704–711
    [Google Scholar]
  30. Schujman G. E., Grau R., Gramajo H. C., Ornella L., de Mendoza D. 1998; De novo fatty acid synthesis is required for establishment of cell type-specific gene transcription during sporulation in Bacillus subtilis. Mol Microbiol 29:1215–1224
    [Google Scholar]
  31. Schujman G. E., Choi K. H., Altabe S., Rock C. O., de Mendoza D. 2001; Response of Bacillus subtilis to cerulenin and acquisition of resistance. J Bacteriol 183:3032–3040
    [Google Scholar]
  32. Schujman G. E., Paoletti L., Grossman A. D., de Mendoza D. 2003; FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev Cell 4:663–672
    [Google Scholar]
  33. Schujman G. E., Guerin M., Buschiazzo A., Schaeffer F., Llarrull L. I., Reh G., Vila A. J., Alzari P. M., de Mendoza D. 2006; Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J 25:4074–4083
    [Google Scholar]
  34. Schujman G. E., Altabe S., de Mendoza D. 2008; A malonyl-CoA-dependent switch in the bacterial response to a dysfunction of lipid metabolism. Mol Microbiol 68:987–996
    [Google Scholar]
  35. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci U S A 44:1072–1078
    [Google Scholar]
  36. Sterlini J. M., Mandelstam J. 1969; Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37
    [Google Scholar]
  37. Van Dyk T. K., Gatenby A. A., LaRossa R. A. 1989; Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 342:451–453
    [Google Scholar]
  38. Zhang Y., Cronan J. E. Jr 1996; Polar allele duplication for transcriptional analysis of consecutive essential genes: application to a cluster of Escherichia coli fatty acid biosynthetic genes. J Bacteriol 178:3614–3620
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033316-0
Loading
/content/journal/micro/10.1099/mic.0.033316-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error