1887

Abstract

Extensive genomic studies on gene duplication in model organisms such as and have recently been undertaken. In these models, it is commonly considered that a duplication event may include a transcription factor (TF), a target gene, or both. Following a gene duplication episode, varying scenarios have been postulated to describe the evolution of the regulatory network. However, in most of these, the TFs have emerged as the most important and in some cases the only factor shaping the regulatory network as the organism responds to a natural selection process, in order to fulfil its metabolic needs. Recent findings concerning the regulatory role played by elements other than TFs have indicated the need to reassess these early models. Thus, we performed an exhaustive review of paralogous gene regulation in and based on published information, available in the NCBI PubMed database and in well-established regulatory databases. Our survey reinforces the notion that despite TFs being the most prominent components shaping the regulatory networks, other elements are also important. These include small RNAs, riboswitches, RNA-binding proteins, sigma factors, protein–protein interactions and DNA supercoiling, which modulate the expression of genes involved in particular metabolic processes or induce a more complex response in terms of the regulatory networks of paralogous genes in an integrated interplay with TFs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033266-0
2010-01-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/14.html?itemId=/content/journal/micro/10.1099/mic.0.033266-0&mimeType=html&fmt=ahah

References

  1. Alm E., Huang K., Arkin A.. 2006; The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLOS Comput Biol2:e143
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  3. Babu M. M., Luscombe N. M., Aravind L., Gerstein M., Teichmann S. A.. 2004; Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol14:283–291
    [Google Scholar]
  4. Babu M. M., Teichmann S. A., Aravind L.. 2006; Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol358:614–633
    [Google Scholar]
  5. Balaji S., Babu M. M., Aravind L.. 2007; Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E. coli. J Mol Biol372:1108–1122
    [Google Scholar]
  6. Bausch C., Ramsey M., Conway T.. 2004; Transcriptional organization and regulation of the l-idonic acid pathway (GntII system) in Escherichia coli. J Bacteriol186:1388–1397
    [Google Scholar]
  7. Bird T., Burbulys D., Wu J. J., Strauch M. A., Hoch J. A., Spiegelman G. B.. 1992; The effect of supercoiling on the in vitro transcription of the spoIIA operon from Bacillus subtilis. Biochimie74:627–634
    [Google Scholar]
  8. Bordes P., Conter A., Morales V., Bouvier J., Kolb A., Gutierrez C.. 2003; DNA supercoiling contributes to disconnect σS accumulation from σS-dependent transcription in Escherichia coli. Mol Microbiol48:561–571
    [Google Scholar]
  9. Cheung K. J., Badarinarayana V., Selinger D. W., Janse D., Church G. M.. 2003; A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res13:206–215
    [Google Scholar]
  10. Chilcott G. S., Hughes K. T.. 2000; Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev64:694–708
    [Google Scholar]
  11. Commichau F. M., Stulke J.. 2008; Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression. Mol Microbiol67:692–702
    [Google Scholar]
  12. Conant G. C., Wolfe K. H.. 2008; Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet9:938–950
    [Google Scholar]
  13. Evangelisti A. M., Wagner A.. 2004; Molecular evolution in the yeast transcriptional regulation network. J Exp Zool B Mol Dev Evol302:392–411
    [Google Scholar]
  14. Ferris H. U., Minamino T.. 2006; Flipping the switch: bringing order to flagellar assembly. Trends Microbiol14:519–526
    [Google Scholar]
  15. Fondi M., Brilli M., Emiliani G., Paffetti D., Fani R.. 2007; The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis. BMC Evol Biol7:Suppl 2S3
    [Google Scholar]
  16. Gama-Castro S., Jimenez-Jacinto V., Peralta-Gil M., Santos-Zavaleta A., Penaloza-Spinola M. I., Contreras-Moreira B., Segura-Salazar J., Muniz-Rascado L., Martinez-Flores I.. other authors 2008; RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res36:D120–D124
    [Google Scholar]
  17. Gardner P. P., Daub J., Tate J. G., Nawrocki E. P., Kolbe D. L., Lindgreen S., Wilkinson A. C., Finn R. D., Griffiths-Jones S.. other authors 2009; Rfam: updates to the RNA families database. Nucleic Acids Res37:D136–D140
    [Google Scholar]
  18. Gelfand M. S.. 2006; Evolution of transcriptional regulatory networks in microbial genomes. Curr Opin Struct Biol16:420–429
    [Google Scholar]
  19. Gottesman S.. 2005; Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet21:399–404
    [Google Scholar]
  20. Gottesman S., McCullen C. A., Guillier M., Vanderpool C. K., Majdalani N., Benhammou J., Thompson K. M., FitzGerald P. C., Sowa N. A., FitzGerald D. J.. 2006; Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol71:1–11
    [Google Scholar]
  21. Grau R., Gardiol D., Glikin G. C., de Mendoza D.. 1994; DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol Microbiol11:933–941
    [Google Scholar]
  22. Gu Z., Nicolae D., Lu H. H., Li W. H.. 2002; Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet18:609–613
    [Google Scholar]
  23. Gu X., Zhang Z., Huang W.. 2005; Rapid evolution of expression and regulatory divergences after yeast gene duplication. Proc Natl Acad Sci U S A102:707–712
    [Google Scholar]
  24. Guillier M., Gottesman S., Storz G.. 2006; Modulating the outer membrane with small RNAs. Genes Dev20:2338–2348
    [Google Scholar]
  25. Guo X., Zhang Z., Gerstein M. B., Zheng D.. 2009; Small RNAs originated from pseudogenes: cis- or trans-acting?. PLOS Comput Biol5:e1000449
    [Google Scholar]
  26. Gutierrez-Preciado A., Jensen R. A., Yanofsky C., Merino E.. 2005; New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria. Trends Genet21:432–436
    [Google Scholar]
  27. Gutierrez-Preciado A., Henkin T. M., Grundy F. J., Yanofsky C., Merino E.. 2009; Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol Mol Biol Rev73:36–61
    [Google Scholar]
  28. Hatfield G. W., Benham C. J.. 2002; DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet36:175–203
    [Google Scholar]
  29. Hecker M., Pane-Farre J., Volker U.. 2007; SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol61:215–236
    [Google Scholar]
  30. Hengge-Aronis R.. 2002; Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev66:373–395 table
    [Google Scholar]
  31. Hsieh L. S., Burger R. M., Drlica K.. 1991; Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth. J Mol Biol219:443–450
    [Google Scholar]
  32. Izu H., Adachi O., Yamada M.. 1997; Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli. J Mol Biol267:778–793
    [Google Scholar]
  33. Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., Katayama T., Kawashima S., Okuda S.. other authors 2008; KEGG for linking genomes to life and the environment. Nucleic Acids Res36:D480–D484
    [Google Scholar]
  34. Kashtan N., Alon U.. 2005; Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci U S A102:13773–13778
    [Google Scholar]
  35. Kroos L., Yu Y. T.. 2000; Regulation of sigma factor activity during Bacillus subtilis development. Curr Opin Microbiol3:553–560
    [Google Scholar]
  36. Li W. H., Yang J., Gu X.. 2005; Expression divergence between duplicate genes. Trends Genet21:602–607
    [Google Scholar]
  37. Lioliou E. E., Mimitou E. P., Grigoroudis A. I., Panagiotidis C. H., Panagiotidis C. A., Kyriakidis D. A.. 2005; Phosphorylation activity of the response regulator of the two-component signal transduction system AtoS-AtoC in E. coli. Biochim Biophys Acta 1725;257–268
    [Google Scholar]
  38. Luscombe N. M., Babu M. M., Yu H., Snyder M., Teichmann S. A., Gerstein M.. 2004; Genomic analysis of regulatory network dynamics reveals large topological changes. Nature431:308–312
    [Google Scholar]
  39. Lynch M., Conery J. S.. 2000; The evolutionary fate and consequences of duplicate genes. Science290:1151–1155
    [Google Scholar]
  40. Martinez-Antonio A., Collado-Vides J.. 2003; Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol6:482–489
    [Google Scholar]
  41. Moreno-Campuzano S., Janga S. C., Perez-Rueda E.. 2006; Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes – a genomic approach. BMC Genomics7:147
    [Google Scholar]
  42. Narberhaus F., Waldminghaus T., Chowdhury S.. 2006; RNA thermometers. FEMS Microbiol Rev30:3–16
    [Google Scholar]
  43. Ninfa A. J., Magasanik B.. 1986; Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A83:5909–5913
    [Google Scholar]
  44. Ogasawara H., Hasegawa A., Kanda E., Miki T., Yamamoto K., Ishihama A.. 2007; Genomic SELEX search for target promoters under the control of the PhoQP-RstBA signal relay cascade. J Bacteriol189:4791–4799
    [Google Scholar]
  45. Pragai Z., Allenby N. E., O'Connor N., Dubrac S., Rapoport G., Msadek T., Harwood C. R.. 2004; Transcriptional regulation of the phoPR operon in Bacillus subtilis. J Bacteriol186:1182–1190
    [Google Scholar]
  46. Pratt L. A., Hsing W., Gibson K. E., Silhavy T. J.. 1996; From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol Microbiol20:911–917
    [Google Scholar]
  47. Reitzer L., Schneider B. L.. 2001; Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev65:422–444
    [Google Scholar]
  48. Schilling O., Herzberg C., Hertrich T., Vorsmann H., Jessen D., Hubner S., Titgemeyer F., Stulke J.. 2006; Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples. Nucleic Acids Res34:6102–6115
    [Google Scholar]
  49. Shen-Orr S. S., Milo R., Mangan S., Alon U.. 2002; Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet31:64–68
    [Google Scholar]
  50. Sierro N., Makita Y., de Hoon M., Nakai K.. 2008; DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res36:D93–D96
    [Google Scholar]
  51. Teichmann S. A., Babu M. M.. 2004; Gene regulatory network growth by duplication. Nat Genet36:492–496
    [Google Scholar]
  52. Typas A., Becker G., Hengge R.. 2007; The molecular basis of selective promoter activation by the σS subunit of RNA polymerase. Mol Microbiol63:1296–1306
    [Google Scholar]
  53. Wanner B. L.. 1992; Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria?. J Bacteriol174:2053–2058
    [Google Scholar]
  54. Weinstein-Fischer D., Elgrably-Weiss M., Altuvia S.. 2000; Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, topoisomerase I and Fis. Mol Microbiol35:1413–1420
    [Google Scholar]
  55. Winkler W. C., Breaker R. R.. 2005; Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol59:487–517
    [Google Scholar]
  56. Yamamoto K., Ishihama A.. 2005a; Transcriptional response of Escherichia coli to external copper. Mol Microbiol56:215–227
    [Google Scholar]
  57. Yamamoto K., Ishihama A.. 2005b; Transcriptional response of Escherichia coli to external zinc. J Bacteriol187:6333–6340
    [Google Scholar]
  58. Yosef N., Kupiec M., Ruppin E., Sharan R.. 2009; A complex-centric view of protein network evolution. Nucleic Acids Res37:e88
    [Google Scholar]
  59. Zhang J., Rosenberg H. F., Nei M.. 1998; Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A95:3708–3713
    [Google Scholar]
  60. Zimmer D. P., Soupene E., Lee H. L., Wendisch V. F., Khodursky A. B., Peter B. J., Bender R. A., Kustu S.. 2000; Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U S A97:14674–14679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033266-0
Loading
/content/journal/micro/10.1099/mic.0.033266-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error