1887

Abstract

Type III secretion (T3S) functions in establishing infections in a large number of Gram-negative bacteria, yet little is known about how host cell properties might function in this process. We used the opportunistic pathogen and the ability to alter host cell sensitivity to T3S to explore this problem. HT-29 epithelial cells were used to study cellular changes associated with loss of T3S sensitivity, which could be induced by treatment with methyl-beta-cyclodextrin or perfringolysin O. HL-60 promyelocytic cells are innately resistant to T3S and were used to study cellular changes occurring in response to induction of T3S sensitivity, which occurred following treatment with phorbol esters. Using both cell models, a positive correlation was observed between eukaryotic cell adherence to tissue culture wells and T3S sensitivity. In examining the type of adhesion process linked to T3S sensitivity in HT-29 cells, a hierarchical order of protein involvement was identified that paralleled the architecture of leading edge (LE) focal complexes. Conversely, in HL-60 cells, induction of T3S sensitivity coincided with the onset of LE properties and the development of actin-rich projections associated with polarized cell migration. When LE architecture was examined by immunofluorescent staining for actin, Rac1, IQ-motif-containing GTPase-activating protein 1 (IQGAP1) and phosphatidylinositol 3 kinase (PI3 kinase), intact LE structure was found to closely correlate with host cell sensitivity to T3S. Our model for host cell involvement in T3S proposes that cortical actin polymerization at the LE alters membrane properties to favour T3S translocon function and the establishment of infections, which is consistent with infections targeting wounded epithelial barriers undergoing cell migration.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033241-0
2010-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/356.html?itemId=/content/journal/micro/10.1099/mic.0.033241-0&mimeType=html&fmt=ahah

References

  1. Allmond L. R., Karaca T. J., Nguyen V. N., Nguyen T., Wiener-Kronish J. P., Sawa T. 2003; Protein binding between PcrG-PcrV and PcrH-PopB/PopD encoded by the pcrGVH-popBD operon of the Pseudomonas aeruginosa type III secretion system. Infect Immun 71:2230–2233
    [Google Scholar]
  2. Barber D. F., Bartolomé A., Hernandez C., Flores J. M., Redondo C., Fernandez-Arias C., Camps M., Rückle T., Schwarz M. K. other authors 2005; PI3K γ inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat Med 11:933–935
    [Google Scholar]
  3. Bashour A. M., Fullerton A. T., Hart M. J., Bloom G. S. 1997; IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J Cell Biol 137:1555–1566
    [Google Scholar]
  4. Camps M., Rückle T., Ji H., Ardissone V., Rintelen F., Shaw J., Ferrandi C., Chabert C., Gillieron C. other authors 2005; Blockade of PI3K suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 11:936–943
    [Google Scholar]
  5. Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. 1978; Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A 75:2458–2462
    [Google Scholar]
  6. Cornelis G. R., Biot T., Lambert de Rouvroit C., Michiels T., Mulder B., Sluiters C., Sory M.-P., Van Bouchaute M., Vanooteghem J.-C. 1989; The Yersinia Yop regulon. Mol Microbiol 3:1455–1459
    [Google Scholar]
  7. Dacheux D., Goure J., Chabert J., Usson Y., Attree I. 2001; Pore-forming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages. Mol Microbiol 40:76–85
    [Google Scholar]
  8. Davies S. P., Reddy H., Caivano M., Cohen P. 2000; Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105
    [Google Scholar]
  9. de Bentzmann S., Roger P., Dupuit F., Bajolet-Laudinat O., Fuchey C., Plotkowski M. C., Puchelle E. 1996; Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 64:1582–1588
    [Google Scholar]
  10. Faudry E., Vernier G., Neumann E., Forge V., Attree I. 2006; Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa. Biochemistry 45:8117–8123
    [Google Scholar]
  11. Fleiszig S. M. J., Evans D. J., Do N., Shin S., Mostov K. E. 1997; Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infect Immun 65:2861–2867
    [Google Scholar]
  12. Fraylick J. E., La Rocque J. R., Vincent T. S., Olson J. C. 2001; Independent and coordinate effects of ADP-ribosyltransferase and GTPase-activating activities of exoenzyme S on HT-29 epithelial cell function. Infect Immun 69:5318–5328
    [Google Scholar]
  13. Fraylick J. E., Riese M. J., Vincent T. S., Barbieri J. T., Olson J. C. 2002; ADP-ribosylation and functional effects of Pseudomonas exoenzyme S on cellular RalA. Biochemistry 41:9680–9687
    [Google Scholar]
  14. Fukata M., Watanabe T., Noritake J., Nakagawa M., Yamaga M., Kuroda S., Matsuura Y., Iwamatsu A., Perez F. other authors 2002; Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109:873–885
    [Google Scholar]
  15. Gao Y., Dickerson J. B., Guo F., Zheng J., Zheng Y. 2004; Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 101:7618–7623
    [Google Scholar]
  16. Gebus C., Faudry E., Bohn Y. S., Elsen S., Attree I. 2008; Oligomerization of PcrV and LcrV, protective antigens of Pseudomonas aeruginosa and Yersinia pestis. J Biol Chem 283:23940–23949
    [Google Scholar]
  17. Gekara N. O., Jacobs T., Chakraborty T., Weiss S. 2005; The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356
    [Google Scholar]
  18. Goeckeler Z. M., Wysolmerski R. B. 1995; Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol 130:613–627
    [Google Scholar]
  19. Goodman A. L., Kulasekara B., Rietsch A., Boyd D., Smith R. S., Lory S. 2004; A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745–754
    [Google Scholar]
  20. Goure J., Pastor A., Faudry E., Chabert J., Dessen A., Attree A. 2004; The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 72:4741–4750
    [Google Scholar]
  21. Goure J., Broz P., Attree O., Cornelis G. R., Attree I. 2005; Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J Infect Dis 192:218–225
    [Google Scholar]
  22. Hart M. J., Callow M. G., Souza B., Polakis P. 1996; IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J 15:2997–3005
    [Google Scholar]
  23. Hauert A. B., Martinelli S., Marone C., Niggli V. 2002; Differentiated HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int J Biochem Cell Biol 34:838–854
    [Google Scholar]
  24. Hayward R. D., Cain R. J., McGhie E. J., Phillips N., Garner M. J., Koronakis V. 2005; Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 56:590–603
    [Google Scholar]
  25. Hotze E. M., Wilson-Kubalek E. M., Rossjohn J., Parker M. W., Johnson A. E., Tweten R. K. 2001; Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane-sheet from a prepore intermediate. J Biol Chem 276:8261–8268
    [Google Scholar]
  26. Huet C., Sahuquillo-Merino C., Coudrier E., Luvard D. 1987; Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J Cell Biol 105:345–357
    [Google Scholar]
  27. Jain M., Ramirez D., Seshadri R., Cullina J. F., Powers C. A., Schulert G. S., Bar-Meir M., Sullivan C. L., McColley S. A. other authors 2004; Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 42:5229–5237
    [Google Scholar]
  28. Kazmierczak B. I., Mostov K., Engel J. N. 2004; Epithelial cell polarity alters Rho-GTPase responses to Pseudomonas aeruginosa. Mol Biol Cell 15:411–419
    [Google Scholar]
  29. Klinghoffer R. A., Sachsenmaier C., Cooper J. A., Soriano P. 1999; Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 18:2459–2471
    [Google Scholar]
  30. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  31. Lafont F., van der Goot F. G. 2005; Oiling the key hole. Mol Microbiol 56:575–577
    [Google Scholar]
  32. Lafont F., Abrami L., van der Goot F. G. 2004; Bacterial subversion of lipid rafts. Curr Opin Microbiol 7:4–10
    [Google Scholar]
  33. Larbi A., Douziech N., Khalil A., Dupuis G., Gheraïri S., Guérard K. P., Fülöp T. Jr 2004; Effects of methyl- β-cyclodextrin on T lymphocytes lipid rafts with aging. Exp Gerontol 39:551–558
    [Google Scholar]
  34. Leglise M. C., Dent G. A., Ayscue L. H., Ross D. W. 1988; Leukemic cell maturation: phenotypic variability and oncogene expression in HL-60 cells: a review. Blood Cells 13:319–337
    [Google Scholar]
  35. Mañes S., Martínez-A C. 2004; Cholesterol domains regulate the actin cytoskeleton at the leading edge of moving cells. Trends Cell Biol 14:275–278
    [Google Scholar]
  36. Mataraza J. M., Briggs M. W., Li Z., Entwistle A., Ridley A. J., Sacks D. B. 2003; IQGAP1 promotes cell motility and invasion. J Biol Chem 278:41237–41245
    [Google Scholar]
  37. McGuffie E. M., Fraylick J. E., Vincent T. S., Olson J. C. 1999; Differential sensitivity of human epithelial cells to Pseudomonas aeruginosa exoenzyme S. Infect Immun 67:3494–3503
    [Google Scholar]
  38. Mejia E., Bliska J. B., Viboud G. I. 2008; Yersinia controls type III effector delivery into host cells by modulating Rho activity. PLoS Pathog 4:e3
    [Google Scholar]
  39. Mueller C. A., Broz P., Muller S. A., Ringler P., Erne-Brand F., Sorg I., Kuhn M., Engel A., Cornelis G. R. 2005; The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310:674–676
    [Google Scholar]
  40. Nobes C. D., Hall A. 1995; Rho, Rac and Cdc42 regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81:53–62
    [Google Scholar]
  41. Ohno-Iwashita Y., Shimada Y., Waheed A. A., Hayashi M., Inomata M., Nakamura M., Maruya M., Iwashita S. 2004; Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 10:125–134
    [Google Scholar]
  42. Olson J. C., McGuffie E. M., Frank D. W. 1997; Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect Immun 65:248–256
    [Google Scholar]
  43. Pederson K. J., Vallis A. J., Aktories K., Frank D. W., Barbieri J. T. 1999; The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32:393–401
    [Google Scholar]
  44. Pederson K. J., Krall R., Riese M. J., Barbieri J. T. 2002; Intracellular localization modulates targeting of ExoS, a type III cytotoxin, to eukaryotic signalling proteins. Mol Microbiol 46:1381–1390
    [Google Scholar]
  45. Pelish H. E., Ciesla W., Tanaka N., Reddy K., Shair M. D., Kirchhausen T., Lencer W. I. 2006; The Cdc42 inhibitor secramine B prevents cAMP-induced K+ conductance in intestinal epithelial cells. Biochem Pharmacol 71:1720–1726
    [Google Scholar]
  46. Pfeltz R. F., Schmidt J. L., Wilkinson B. J. 2001; A microdilution plating method for population analysis of antibiotic-resistant staphylococci. Microb Drug Resist 7:289–295
    [Google Scholar]
  47. Plotkowski M. C., de Bentzmann S., Pereira S. H., Zahm J. M., Bajolet-Laudinat O., Roger P., Puchelle E. 1999; Pseudomonas aeruginosa internalization by human and epithelial respiratory cells depends on cell differentiation, polarity, and junctional complex integrity. Am J Respir Cell Mol Biol 20:880–890
    [Google Scholar]
  48. Ramachandran R., Tweten R. K., Johnson A. E. 2004; Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment. Nat Struct Mol Biol 11:697–705
    [Google Scholar]
  49. Ridley A. J., Schwartz M. A., Burridge K., Firtel R. A., Ginsberg M. H., Borisy G., Parsons J. T., Horwitz A. R. 2003; Cell migration: integrating signals from front to back. Science 302:1704–1709
    [Google Scholar]
  50. Riff J. D., Callahan J. W., Sherman P. M. 2005; Cholesterol-enriched membrane microdomains are required for inducing host cell cytoskeleton rearrangements in response to attaching–effacing Escherichia coli. Infect Immun 73:7113–7125
    [Google Scholar]
  51. Rocha C. L., Rucks E. A., Greene D. M., Olson J. C. 2005; Examination of the coordinate effects of Pseudomonas ExoS on Rac1. Infect Immun 73:5458–5467
    [Google Scholar]
  52. Rose J. J., Foley J. F., Yi L., Herren G., Venkatesan S. 2008; Cholesterol is obligatory for polarization and chemotaxis but not for endocytosis and associated signaling from chemoattractant receptors in human neutrophils. J Biomed Sci 15:441–461
    [Google Scholar]
  53. Rucks E. A., Olson J. C. 2005; Characterization of an ExoS type III translocation-resistant cell line. Infect Immun 73:638–643
    [Google Scholar]
  54. Rucks E. A., Fraylick J. E., Brandt L. M., Vincent T. S., Olson J. C. 2003; Cell line differences in bacterially translocated ExoS ADP-ribosyltransferase substrate specificity. Microbiology 149:319–331
    [Google Scholar]
  55. Sawa T., Yahr T. L., Ohara M., Kurahashi K., Gropper M. A., Wiener-Kronish J. P., Frank D. W. 1999; Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 5:392–398
    [Google Scholar]
  56. Schoehn G., Di Guilmi A. M., Lemaire D., Attree I., Weissenhorn W., Dessen A. 2003; Oligomerization of type III secretion proteins PopB and PopD precedes pore formation. EMBO J 22:4957–4967
    [Google Scholar]
  57. Servant G., Weiner O. D., Herzmark P., Balla T., Dedat J. W., Bourne H. R. 2000; Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040
    [Google Scholar]
  58. Shepard L. A., Heuck A. P., Hamman B. D., Rossjohn J., Parker M. W., Ryan K. R., Johnson A. E., Tweten R. K. 1998; Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574
    [Google Scholar]
  59. Shimada Y., Maruya M., Iwashita S., Ohno-Iwashita Y. 2002; The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269:6195–6203
    [Google Scholar]
  60. Slosberg E. D., Yao Y., Xing F., Ikui A., Jirousek M. R., Weinstein I. B. 2000; The protein kinase C β-specific inhibitor LY379196 blocks TPA-induced monocytic differentiation of HL60 cells. Mol Carcinog 27:166–176
    [Google Scholar]
  61. Tonetti D. A., Henning-Chubb C., Yamanishi D. T., Huberman E. 1994; Protein kinase C- β is required for macrophage differentiation of human HL-60 leukemia cells. J Biol Chem 269:23230–23235
    [Google Scholar]
  62. Tweten R. K. 2005; Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209
    [Google Scholar]
  63. Vallis A. J., Finck-Barbancon V., Yahr T. L., Frank D. W. 1999; Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect Immun 67:2040–2044
    [Google Scholar]
  64. van der Goot F. G., Tran van Nhieu G., Allaoui A., Sansonetti P., Lafont F. 2004; Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J Biol Chem 279:47792–47798
    [Google Scholar]
  65. Waheed A. A., Shimada Y., Heijnen H. F., Nakamura M., Inomata M., Hayashi M., Iwashita S., Slot J. W., Ohno-Iwashita Y. 2001; Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc Natl Acad Sci U S A 98:4926–4931
    [Google Scholar]
  66. Wolf A. A., Fujinaga Y., Lencer W. I. 2002; Uncoupling of the cholera toxin-G(M1) ganglioside receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol. J Biol Chem 277:16249–16256
    [Google Scholar]
  67. Xu B., Pelish H., Kirchhausen T., Hammond G. B. 2006; Large scale synthesis of the Cdc42 inhibitor secramine A and its inhibition of cell spreading. Org Biomol Chem 4:4149–4157
    [Google Scholar]
  68. Zheng X., Ravatn R., Lin Y., Shih W. C., Rabson A., Strair R., Huberman E., Conney A., Chin K. V. 2002; Gene expression of TPA induced differentiation in HL-60 cells by DNA microarray analysis. Nucleic Acids Res 30:4489–4499
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033241-0
Loading
/content/journal/micro/10.1099/mic.0.033241-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error