1887

Abstract

Otitis media (OM) is one of the most frequent diseases in childhood, and is among the main causative bacterial agents. Since current experimental models used to study the bacterial pathogenesis of OM have several limitations, such as the invasiveness of the experimental procedures, we developed a non-invasive murine OM model. In our model, adapted from a previously developed rat OM model, a pressure cabin is used in which a 40 kPa pressure increase is applied to translocate pneumococci from the nasopharyngeal cavity into both mouse middle ears. Wild-type pneumococci were found to persist in the middle ear cavity for 144 h after infection, with a maximum bacterial load at 96 h. Inflammation was confirmed at 96 and 144 h post-infection by IL-1 and TNF- cytokine analysis and histopathology. Subsequently, we investigated the contribution of two surface-associated pneumococcal proteins, the streptococcal lipoprotein rotamase A (SlrA) and the putative proteinase maturation protein A (PpmA), to experimental OM in our model. Pneumococci lacking the gene, but not those lacking the gene, were significantly reduced in virulence in the OM model. Importantly, pneumococci lacking both genes were significantly more attenuated than the Δ single mutant. This additive effect suggests that SlrA and PpmA exert complementary functions during experimental OM. In conclusion, we have developed a highly reproducible and non-invasive murine infection model for pneumococcal OM using a pressure cabin, which is very suitable to study pneumococcal pathogenesis and virulence .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033175-0
2009-12-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4135.html?itemId=/content/journal/micro/10.1099/mic.0.033175-0&mimeType=html&fmt=ahah

References

  1. Adrian P. V., Thomson C. J., Klugman K. P., Amyes S. G.. 2000; New gene cassettes for trimethoprim resistance, dfr13, and streptomycin-spectinomycin resistance, aadA4, inserted on a class 1 integron. Antimicrob Agents Chemother44:355–361
    [Google Scholar]
  2. Albiger B., Sandgren A., Katsuragi H., Meyer-Hoffert U., Beiter K., Wartha F., Hornef M., Normark S., Normark B. H.. 2005; Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell Microbiol7:1603–1615
    [Google Scholar]
  3. Albiger B., Dahlberg S., Sandgren A., Wartha F., Beiter K., Katsuragi H., Akira S., Normark S., Henriques-Normark B.. 2007; Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol9:633–644
    [Google Scholar]
  4. Alexander J. E., Lock R. A., Peeters C. C., Poolman J. T., Andrew P. W., Mitchell T. J., Hansman D., Paton J. C.. 1994; Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun62:5683–5688
    [Google Scholar]
  5. Alper C. M., Swarts J. D., Doyle W. J.. 2000; Prevention of otitis media with effusion by repeated air inflation in a monkey model. Arch Otolaryngol Head Neck Surg126:609–614
    [Google Scholar]
  6. Bakaletz L. O.. 2004; Developing animal models for polymicrobial diseases. Nat Rev Microbiol2:552–568
    [Google Scholar]
  7. Briles D. E., Crain M. J., Gray B. M., Forman C., Yother J.. 1992; Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect Immun60:111–116
    [Google Scholar]
  8. Chen H., Ma Y., Yang J., O'Brien C. J., Lee S. L., Mazurkiewicz J. E., Haataja S., Yan J. H., Gao G. F., Zhang J. R.. 2007; Genetic requirement for pneumococcal ear infection. PLoS One3:e2950
    [Google Scholar]
  9. Cripps A. W., Kyd J. M.. 2007; Comparison of mucosal and parenteral immunisation in two animal models of pneumococcal infection: otitis media and acute pneumonia. Vaccine25:2471–2477
    [Google Scholar]
  10. Cripps A. W., Otczyk D. C., Kyd J. M.. 2005; Bacterial otitis media: a vaccine preventable disease?. Vaccine23:2304–2310
    [Google Scholar]
  11. Cron L. E., Bootsma H. J., Noske N., Burghout P., Hammerschmidt S., Hermans P. W.. 2009; Surface-associated lipoprotein PpmA of Streptococcus pneumoniae is involved in colonization in a strain-specific manner. Microbiology155:2401–2410
    [Google Scholar]
  12. Ehrlich G. D., Veeh R., Wang X., Costerton J. W., Hayes J. D., Hu F. Z., Daigle B. J., Ehrlich M. D., Post J. C.. 2002; Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA287:1710–1715
    [Google Scholar]
  13. Fogle-Ansson M., White P., Hermansson A., Melhus A.. 2006; Otomicroscopic findings and systemic interleukin-6 levels in relation to etiologic agent during experimental acute otitis media. APMIS114:285–291
    [Google Scholar]
  14. Forbes M. L., Horsey E., Hiller N. L., Buchinsky F. J., Hayes J. D., Compliment J. M., Hillman T., Ezzo S., Shen K.. other authors 2008; Strain-specific virulence phenotypes of Streptococcus pneumoniae assessed using the Chinchilla laniger model of otitis media. PLoS ONE3:e1969
    [Google Scholar]
  15. Fulghum R. S., Marrow H. G.. 1996; Experimental otitis media with Moraxella ( Branhamella) catarrhalis. Ann Otol Rhinol Laryngol105:234–241
    [Google Scholar]
  16. Giebink G. S.. 2001; The prevention of pneumococcal disease in children. N Engl J Med345:1177–1183
    [Google Scholar]
  17. Giebink G. S., Berzins I. K., Marker S. C., Schiffman G.. 1980; Experimental otitis media after nasal inoculation of Streptococcus pneumoniae and influenza A virus in chinchillas. Infect Immun30:445–450
    [Google Scholar]
  18. Hava D. L., Camilli A.. 2002; Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol45:1389–1406
    [Google Scholar]
  19. Hendriksen W. T., Silva N., Bootsma H. J., Blue C. E., Paterson G. K., Kerr A. R., de Jong A., Kuipers O. P., Hermans P. W., Mitchell T. J.. 2007; Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent. J Bacteriol189:1382–1389
    [Google Scholar]
  20. Hendriksen W. T., Kloosterman T. G., Bootsma H. J., Estevao S., de Groot R., Kuipers O. P., Hermans P. W.. 2008; Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of Streptococcus pneumoniae. Infect Immun76:1230–1238
    [Google Scholar]
  21. Hendriksen W. T., Bootsma H. J., van Diepen A., Estevao S., Kuipers O. P., de Groot R., Hermans P. W.. 2009; Strain-specific impact of PsaR of Streptococcus pneumoniae on global gene expression and virulence. Microbiology155:1569–1579
    [Google Scholar]
  22. Hermans P. W., Adrian P. V., Albert C., Estevao S., Hoogenboezem T., Luijendijk I. H., Kamphausen T., Hammerschmidt S.. 2006; The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. J Biol Chem281:968–976
    [Google Scholar]
  23. Kakiuchi M., Tsujigiwa H., Orita Y., Nagatsuka H., Yoshinobu J., Kariya S., Haginomori S., Orita S., Fukushima K.. other authors 2006; Cyclooxygenase 2 expression in otitis media with effusion. Am J Otolaryngol27:81–85
    [Google Scholar]
  24. Krekorian T. D., Keithley E. M., Takahashi M., Fierer J., Harris J. P.. 1990; Endotoxin-induced otitis media with effusion in the mouse. Immunohistochemical analysis. Acta Otolaryngol109:288–299
    [Google Scholar]
  25. Lysenko E. S., Ratner A. J., Nelson A. L., Weiser J. N.. 2005; The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog1:e1
    [Google Scholar]
  26. MacArthur C. J., Trune D. R.. 2006; Mouse models of otitis media. Curr Opin Otolaryngol Head Neck Surg14:341–346
    [Google Scholar]
  27. MacArthur C. J., Hefeneider S. H., Kempton J. B., Parrish S. K., McCoy S. L., Trune D. R.. 2006; Evaluation of the mouse model for acute otitis media. Hear Res219:12–23
    [Google Scholar]
  28. Maeda K., Hirano T., Ichimiya I., Kurono Y., Suzuki M., Mogi G.. 2004; Cytokine expression in experimental chronic otitis media with effusion in mice. Laryngoscope114:1967–1972
    [Google Scholar]
  29. Melhus A., Ryan A. F.. 2003; A mouse model for acute otitis media. APMIS111:989–994
    [Google Scholar]
  30. Ogunniyi A. D., Grabowicz M., Briles D. E., Cook J., Paton J. C.. 2007; Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect Immun75:350–357
    [Google Scholar]
  31. Overweg K., Kerr A., Sluijter M., Jackson M. H., Mitchell T. J., de Jong A. P., de Groot R., Hermans P. W.. 2000; The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun68:4180–4188
    [Google Scholar]
  32. Ryan A. F., Ebmeyer J., Furukawa M., Pak K., Melhus A., Wasserman S. I., Chung W. H.. 2006; Mouse models of induced otitis media. Brain Res1091:3–8
    [Google Scholar]
  33. Sabirov A., Metzger D. W.. 2006; Intranasal vaccination of neonatal mice with polysaccharide conjugate vaccine for protection against pneumococcal otitis media. Vaccine24:5584–5592
    [Google Scholar]
  34. Sabirov A., Metzger D. W.. 2008; Mouse models for the study of mucosal vaccination against otitis media. Vaccine26:1501–1524
    [Google Scholar]
  35. Sandgren A., Albiger B., Orihuela C. J., Tuomanen E., Normark S., Henriques-Normark B.. 2005; Virulence in mice of pneumococcal clonal types with known invasive disease potential in humans. J Infect Dis192:791–800
    [Google Scholar]
  36. Skotnicka B., Hassmann E.. 2008; Proinflammatory and immunoregulatory cytokines in the middle ear effusions. Int J Pediatr Otorhinolaryngol72:13–17
    [Google Scholar]
  37. Tong H. H., Long J. P., Li D., DeMaria T. F.. 2004; Alteration of gene expression in human middle ear epithelial cells induced by influenza A virus and its implication for the pathogenesis of otitis media. Microb Pathog37:193–204
    [Google Scholar]
  38. Tong H. H., Chen Y., Liu X., DeMaria T. F.. 2008; Differential expression of cytokine genes and iNOS induced by nonviable nontypeable Haemophilus influenzae or its LOS mutants during acute otitis media in the rat. Int J Pediatr Otorhinolaryngol72:1183–1191
    [Google Scholar]
  39. Tonnaer E. L., Sanders E. A., Curfs J. H.. 2003; Bacterial otitis media: a new non-invasive rat model. Vaccine21:4539–4544
    [Google Scholar]
  40. Tuomanen E. I.. 2000; Pathogenesis of pneumococcal inflammation: otitis media. Vaccine19:Suppl 1S38–S40
    [Google Scholar]
  41. van der Ven L. T., van den Dobbelsteen G. P., Nagarajah B., van Dijken H., Dortant P. M., Vos J. G., Roholl P. J.. 1999; A new rat model of otitis media caused by Streptococcus pneumoniae: conditions and application in immunization protocols. Infect Immun67:6098–6103
    [Google Scholar]
  42. Wu H. Y., Virolainen A., Mathews B., King J., Russell M. W., Briles D. E.. 1997; Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb Pathog23:127–137
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033175-0
Loading
/content/journal/micro/10.1099/mic.0.033175-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error