1887

Abstract

antibiotic regulatory proteins (SARPs) have been shown to activate transcription by binding to a tandemly arrayed set of heptameric direct repeats located around the −35 region of their cognate promoters. Experimental evidence is presented here showing that is a regulatory gene in the valanimycin biosynthetic gene cluster of and encodes a protein belonging to the SARP family. The organization of the valanimycin biosynthetic gene cluster suggests that the valanimycin biosynthetic genes are located on three potential transcripts, , and . Disruption of abolished valanimycin biosynthesis. Western blot analyses showed that VlmR and VlmA are absent from the mutant and that the production of VlmK is severely diminished. These results demonstrate that the expression of these genes from the three potential transcripts is under the positive control of VlmI. The and intergenic regions both exhibit a pattern of heptameric direct repeats. Gel shift assays with VlmI overproduced in as a C-terminal FLAG-tagged protein clearly demonstrated that VlmI binds to DNA fragments from both regions that contain these heptameric repeats. When a high-copy-number expression plasmid was introduced into M512, which contains mutations in the undecylprodigiosin and actinorhodin activators and , undecylprodigiosin production was restored, showing that can complement a mutation. Introduction of the same expression plasmid into an mutant restored valanimycin production to wild-type levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033167-0
2010-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/472.html?itemId=/content/journal/micro/10.1099/mic.0.033167-0&mimeType=html&fmt=ahah

References

  1. Arias, P., Fernandez-Moreno, M. A. & Malpartida, F. ( 1999; ). Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181, 6958–6968.
    [Google Scholar]
  2. Bibb, M. J. ( 2005; ). Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8, 208–215.[CrossRef]
    [Google Scholar]
  3. Bierman, M., Logan, R., Obrien, K., Seno, E. T., Rao, R. N. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49.[CrossRef]
    [Google Scholar]
  4. Chen, Y., Wendt-Pienkowski, E. & Shen, B. ( 2008; ). Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190, 5587–5596.[CrossRef]
    [Google Scholar]
  5. Couch, R., Seidle, H. & Parry, R. J. ( 2002; ). Construction of expression vectors to produce affinity-tagged proteins in Pseudomonas. Biotechniques 32, 1230–1236.
    [Google Scholar]
  6. Fernandez-Moreno, M. A., Caballero, J. L., Hopwood, D. A. & Malpartida, F. ( 1991; ). The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66, 769–780.[CrossRef]
    [Google Scholar]
  7. Floriano, B. & Bibb, M. ( 1996; ). afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21, 385–396.[CrossRef]
    [Google Scholar]
  8. Garg, R. P., Menon, A. L., Jacobs, K., Robson, R. M. & Robson, R. L. ( 1994; ). The hypE gene completes the gene cluster for H2-oxidation in Azotobacter vinelandii. J Mol Biol 236, 390–396.[CrossRef]
    [Google Scholar]
  9. Garg, R. P., Yindeeyoungyeon, W., Gilis, A., Denny, T. P., Van Der Lelie, D. & Schell, M. A. ( 2000; ). Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system. Mol Microbiol 38, 359–367.[CrossRef]
    [Google Scholar]
  10. Garg, R. P., Ma, Y., Hoyt, J. C. & Parry, R. J. ( 2002; ). Molecular characterization and analysis of the biosynthetic gene cluster for the azoxy antibiotic valanimycin. Mol Microbiol 46, 505–517.[CrossRef]
    [Google Scholar]
  11. Garg, R. P., Gonzalez, J. M. & Parry, R. J. ( 2006; ). Biochemical characterization of VlmL, a seryl-tRNA synthetase encoded by the valanimycin biosynthetic gene cluster. J Biol Chem 281, 26785–26791.[CrossRef]
    [Google Scholar]
  12. Garg, R. P., Qian, X. L., Alemany, L. B., Moran, S. & Parry, R. J. ( 2008; ). Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc Natl Acad Sci U S A 105, 6543–6547.[CrossRef]
    [Google Scholar]
  13. Garg, R. P., Alemany, L. B., Moran, S. & Parry, R. J. ( 2009; ). Isolation, characterization, and bioconversion of a new intermediate in valanimycin biosynthesis. J Am Chem Soc 131, 9608–9609.[CrossRef]
    [Google Scholar]
  14. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich: The John Innes Foundation.
  15. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  16. Ma, Y. & Parry, R. J. ( 2000; ). A novel valanimycin-resistance determinant (vlmF) from Streptomyces viridifaciens MG456-hF10. Microbiology 146, 345–352.
    [Google Scholar]
  17. MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H. & Macneil, T. ( 1992; ). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111, 61–68.[CrossRef]
    [Google Scholar]
  18. Mazodier, P., Petter, R. & Thompson, C. ( 1989; ). Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171, 3583–3585.
    [Google Scholar]
  19. Narva, K. E. & Feitelson, J. S. ( 1990; ). Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol 172, 326–333.
    [Google Scholar]
  20. Parry, R. J. & Li, W. ( 1997a; ). An NADPH : FAD oxidoreductase from the valanimycin producer, Streptomyces viridifaciens. Cloning, analysis, and overexpression. J Biol Chem 272, 23303–23311.[CrossRef]
    [Google Scholar]
  21. Parry, R. J. & Li, W. ( 1997b; ). Purification and characterization of isobutylamine N-hydroxylase from the valanimycin producer Streptomyces viridifaciens MG456-hF10. Arch Biochem Biophys 339, 47–54.[CrossRef]
    [Google Scholar]
  22. Parry, R. J., Li, W. & Cooper, H. N. ( 1997; ). Cloning, analysis, and overexpression of the gene encoding isobutylamine N-hydroxylase from the valanimycin producer, Streptomyces viridifaciens. J Bacteriol 179, 409–416.
    [Google Scholar]
  23. Perez-Llarena, F. J., Liras, P., Rodriguez-Garcia, A. & Martin, J. F. ( 1997; ). A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 179, 2053–2059.
    [Google Scholar]
  24. Scheu, A. K., Martinez, E., Soliveri, J. & Malpartida, F. ( 1997; ). abaB, a putative regulator for secondary metabolism in Streptomyces. FEMS Microbiol Lett 147, 29–36.[CrossRef]
    [Google Scholar]
  25. Stutzman-Engwall, K. J., Otten, S. L. & Hutchinson, C. R. ( 1992; ). Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol 174, 144–154.
    [Google Scholar]
  26. Tanaka, A., Takano, Y., Ohnishi, Y. & Horinouchi, S. ( 2007; ). AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol 369, 322–333.[CrossRef]
    [Google Scholar]
  27. Tang, L., Grimm, A., Zhang, Y. X. & Hutchinson, C. R. ( 1996; ). Purification and characterization of the DNA-binding protein DnrI, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucetius. Mol Microbiol 22, 801–813.[CrossRef]
    [Google Scholar]
  28. Thomson, J. M. & Parrott, W. A. ( 1998; ). pMECA: a cloning plasmid with 44 unique restriction sites that allows selection of recombinants based on colony size. Biotechniques 24, 922–928.
    [Google Scholar]
  29. Vara, J., Lewandowska-Skarbek, M., Wang, Y. G., Donadio, S. & Hutchinson, C. R. ( 1989; ). Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171, 5872–5881.
    [Google Scholar]
  30. Wasserman, H. H., Rodgers, G. C. & Keith, D. D. ( 1976; ). Undecylprodigiosin. Tetrahedron 32, 1851–1854.[CrossRef]
    [Google Scholar]
  31. Wietzorrek, A. & Bibb, M. ( 1997; ). A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25, 1181–1184.[CrossRef]
    [Google Scholar]
  32. Yamato, M., Iinuma, H., Naganawa, H., Yamagishi, Y., Hamada, M., Masuda, T. & Umezawa, H. ( 1986; ). Isolation and properties of valanimycin, a new azoxy antibiotic. J Antibiot 39, 184–191.[CrossRef]
    [Google Scholar]
  33. Yin, X., O'Hare, T., Gould, S. J. & Zabriskie, T. M. ( 2003; ). Identification and cloning of genes encoding viomycin biosynthesis from Streptomyces vinaceus and evidence for involvement of a rare oxygenase. Gene 312, 215–224.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033167-0
Loading
/content/journal/micro/10.1099/mic.0.033167-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error