1887

Abstract

Phosphoribosylamine (PRA) is the first intermediate in the common purine/thiamine biosynthetic pathway and is primarily synthesized by the product of the gene, glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase (E.C. 2.4.2.14). Past genetic and biochemical studies have shown that multiple mechanisms for the synthesis of PRA independent of PurF are present in . Here, we describe mutant alleles of the essential gene, which encodes PRPP synthetase (E.C.2.7.6.1), that allow PurF-independent thiamine synthesis. The mutant alleles resulted in reduced PrsA activity in extracts, caused nutritional requirements indicative of PRPP limitation and allowed non-enzymic formation of PRA due to a build-up of ribose 5-phosphate (R5P). These results emphasize the balance that must be reached between pathways competing for the same substrate to maintain robustness of the metabolic network.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033050-0
2010-03-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/950.html?itemId=/content/journal/micro/10.1099/mic.0.033050-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  2. Beck B. J., Downs D. M. 1998; The apbE gene encodes a lipoprotein involved in thiamine synthesis in Salmonella typhimurium. J Bacteriol 180:885–891
    [Google Scholar]
  3. Beck B. J., Connolly L. E., De Las Penas A., Downs D. M. 1997; Evidence that rseC, a gene in the rpoE cluster, has a role in thiamine synthesis in Salmonella typhimurium. J Bacteriol 179:6504–6508
    [Google Scholar]
  4. Bower S. G., Hove-Jensen B., Switzer R. L. 1988; Structure of the gene encoding phosphoribosylpyrophosphate synthetase ( prsA) in Salmonella typhimurium. J Bacteriol 170:3243–3248
    [Google Scholar]
  5. Browne B. A., Ramos A. I., Downs D. M. 2006; PurF-independent phosphoribosyl amine formation in yjgF mutants of Salmonella enterica utilizes the tryptophan biosynthetic enzyme complex anthranilate synthase-phosphoribosyltransferase. J Bacteriol 188:6786–6792
    [Google Scholar]
  6. Castilho B. A., Olfson P., Casadaban M. J. 1984; Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol 158:488–495
    [Google Scholar]
  7. Creighton T. E. 1968; The nonenzymatic preparation in solution of N-(5-phosphoribosyl) anthranilic acid, an intermediate in tryptophan biosynthesis. J Biol Chem 243:5605–5609
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  9. Davis R. W., Botstein D., Roth J. R. 1980 Advanced bacterial genetics Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory;
  10. Downs D. M., Petersen L. 1994; apbA, a new genetic locus involved in thiamine biosynthesis in Salmonella typhimurium. J Bacteriol 176:4858–4864
    [Google Scholar]
  11. Downs D. M., Roth J. R. 1991; Synthesis of thiamine in Salmonella typhimurium independent of the purF function. J Bacteriol 173:6597–6604
    [Google Scholar]
  12. Enos-Berlage J. L., Downs D. M. 1996; Involvement of the oxidative pentose phosphate pathway in thiamine biosynthesis in Salmonella typhimurium. J Bacteriol 178:1476–1479
    [Google Scholar]
  13. Enos-Berlage J. L., Langendorf M. J., Downs D. M. 1998; Complex metabolic phenotypes caused by a mutation in yjgF, encoding a member of the highly conserved YER057c/YjgF family of proteins. J Bacteriol 180:6519–6528
    [Google Scholar]
  14. Eriksen T. A., Kadziola A., Bentsen A. K., Harlow K. W., Larsen S. 2000; Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase. Nat Struct Biol 7:303–308
    [Google Scholar]
  15. Ferrari M., Giacomello A., Salerno C., Messina E. 1978; A spectrophotometric assay for phosphoribosylpyrophosphate synthetase. Anal Biochem 89:355–359
    [Google Scholar]
  16. Gralnick J., Downs D. 2001; Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc Natl Acad Sci U S A 98:8030–8035
    [Google Scholar]
  17. Gutnick D., Clvo J. M., Klopotowaski T., Ames B. N. 1969; Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT2. J Bacteriol 100:215–219
    [Google Scholar]
  18. Hartman P. E., Hartman Z., Stahl R. C. 1971; Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella. Adv Genet 16:1–34
    [Google Scholar]
  19. Hove-Jensen B. 1985; Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli. Mol Gen Genet 201:269–276
    [Google Scholar]
  20. Hove-Jensen B. 1988; Mutation in the phosphoribosylpyrophosphate synthetase gene ( prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. J Bacteriol 170:1148–1152
    [Google Scholar]
  21. Jensen K. F. 1983; Metabolism of5-phosphoribosyl 1-pyrophosphate (PRPP) in Escherichia coli and Salmonella typhimurium. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms pp 1–26 Edited by Munch-Petersen A. London: Academic Press;
    [Google Scholar]
  22. Jochimsen B. U., Hove-Jensen B., Garber B. B., Gots J. S. 1985; Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase. J Gen Microbiol 131:245–252
    [Google Scholar]
  23. Nierlich D. P., Magasanik B. 1965; Phosphoribosylglycinamide synthetase of Aerobacter aerogenes. J Biol Chem 240:366–374
    [Google Scholar]
  24. Petersen L., Enos-Berlage J., Downs D. M. 1996; Genetic analysis of metabolic cross-talk and its impact on thiamine synthesis in Salmonella typhimurium. Genetics 143:37–44
    [Google Scholar]
  25. Post D. A., Switzer R. L. 1991; prsB is an allele of the Salmonella typhimurium prsA gene: characterization of a mutant phosphoribosylpyrophosphate synthetase. J Bacteriol 173:1978–1986
    [Google Scholar]
  26. Ramos I., Downs D. M. 2003; Anthranilate synthase can generate sufficient phosphoribosyl amine for thiamine synthesis in Salmonella enterica. J Bacteriol 185:5125–5132
    [Google Scholar]
  27. Ramos I., Vivas E. I., Downs D. M. 2008; Mutations in the tryptophan operon allow PurF-independent thiamine synthesis by altering flux in vivo. J Bacteriol 190:815–822
    [Google Scholar]
  28. Roberts G. P. 1978 Isolation and Characterization of Informational Suppressors in Salmonella Typhimurium Berkeley, CA: University of California; Berkeley:
  29. Schmieger H. 1972; Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119:75–88
    [Google Scholar]
  30. Shimizu K. 2004; Metabolic flux analysis based on 13C-labeling experiments and integration of the information with gene and protein expression patterns. Adv Biochem Eng Biotechnol 91:1–49
    [Google Scholar]
  31. Sprenger G. A. 1995; Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324–330
    [Google Scholar]
  32. Vogel H. J., Bonner D. M. 1956; Acetylornithase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  33. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. 1984; New Tn 10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369–379
    [Google Scholar]
  34. Willemoes M., Nilsson D., Hove-Jensen B. 1996; Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose 5-phosphate binding. Biochemistry 35:8181–8186
    [Google Scholar]
  35. Yen R. C., Adams W. B., Lazar C., Becker M. A. 1978; Evidence for X-linkage of human phosphoribosylpyrophosphate synthetase. Proc Natl Acad Sci U S A 75:482–485
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033050-0
Loading
/content/journal/micro/10.1099/mic.0.033050-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error