Two type IV secretion systems with different functions in K56-2 Free

Abstract

Bacterial type IV secretion systems (T4SS) perform two fundamental functions related to pathogenesis: the delivery of effector molecules to eukaryotic target cells, and genetic exchange. Two T4SSs have been identified in K56-2, a representative of the ET12 lineage of the complex (Bcc). The plant tissue watersoaking (Ptw) T4SS encoded on a resident 92 kb plasmid is a chimera composed of VirB/D4 and F-specific subunits, and is responsible for the translocation of effector(s) that have been linked to the Ptw phenotype. The bc-VirB/D4 system located on chromosome II displays homology to the VirB/D4 T4SS of . In contrast to the Ptw T4SS, the bc-VirB/D4 T4SS was found to be dispensable for Ptw effector(s) secretion, but was found to be involved in plasmid mobilization. The fertility inhibitor Osa did not affect the secretion of Ptw effector(s) via the Ptw system, but did disrupt the mobilization of a RSF1010 derivative plasmid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033043-0
2009-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4005.html?itemId=/content/journal/micro/10.1099/mic.0.033043-0&mimeType=html&fmt=ahah

References

  1. Abdallah A. M., Gey van Pittius N. C., Champion P. A., Cox J., Luirink J., Vandenbroucke-Grauls C. M., Appelmelk B. J., Bitter W. 2007; Type VII secretion – mycobacteria show the way. Nat Rev Microbiol 5:883–891
    [Google Scholar]
  2. Atmakuri K., Ding Z., Christie P. J. 2003; VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens . Mol Microbiol 49:1699–1713
    [Google Scholar]
  3. Backert S., Meyer T. F. 2006; Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217
    [Google Scholar]
  4. Barrett A. R., Kang Y., Inamasu K. S., Son M. S., Vukovich J. M., Hoang T. T. 2008; Genetic tools for allelic replacement in Burkholderia species. Appl Environ Microbiol 74:4498–4508
    [Google Scholar]
  5. Berriatua E., Ziluaga I., Miguel-Virto C., Uribarren P., Juste R., Laevens S., Vandamme P., Govan J. R. 2001; Outbreak of subclinical mastitis in a flock of dairy sheep associated with Burkholderia cepacia complex infection. J Clin Microbiol 39:990–994
    [Google Scholar]
  6. Cabezon E., Lanka E., de la Cruz F. 1994; Requirements for mobilization of plasmids RSF1010 and ColE1 by the IncW plasmid R388: trwB and RP4 traG are interchangeable. J Bacteriol 176:4455–4458
    [Google Scholar]
  7. Cascales E., Christie P. J. 2003; The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149
    [Google Scholar]
  8. Cascales E., Atmakuri K., Liu Z., Binns A. N., Christie P. J. 2005; Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 58:565–579
    [Google Scholar]
  9. Chen C. Y., Kado C. I. 1994; Inhibition of Agrobacterium tumefaciens oncogenicity by the osa gene of pSa. J Bacteriol 176:5697–5703
    [Google Scholar]
  10. Chen L., Chen Y., Wood D. W., Nester E. W. 2002; A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens . J Bacteriol 184:4838–4845
    [Google Scholar]
  11. Christie P. J. 2001; Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40:294–305
    [Google Scholar]
  12. Christie P. J., Atmakuri K., Krishnamoorthy V., Jakubowski S., Cascales E. 2005; Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485
    [Google Scholar]
  13. Coenye T., Vandamme P. 2003; Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729
    [Google Scholar]
  14. Coenye T., Vandamme P., Govan J. R., LiPuma J. J. 2001; Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39:3427–3436
    [Google Scholar]
  15. Dennis J. J., Zylstra G. J. 1998; Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715
    [Google Scholar]
  16. Dhar S. K., Soni R. K., Das B. K., Mukhopadhyay G. 2003; Molecular mechanism of action of major Helicobacter pylori virulence factors. Mol Cell Biochem 253:207–215
    [Google Scholar]
  17. Ding Z., Atmakuri K., Christie P. J. 2003; The outs and ins of bacterial type IV secretion substrates. Trends Microbiol 11:527–535
    [Google Scholar]
  18. Engledow A. S., Medrano E. G., Mahenthiralingam E., LiPuma J. J., Gonzalez C. F. 2004; Involvement of a plasmid-encoded type IV secretion system in the plant tissue watersoaking phenotype of Burkholderia cenocepacia . J Bacteriol 186:6015–6024
    [Google Scholar]
  19. Flannagan R. S., Linn T., Valvano M. A. 2008; A system for the construction of targeted unmarked gene deletions in the genus Burkholderia . Environ Microbiol 10:1652–1660
    [Google Scholar]
  20. Fong S. T., Stanisich V. A. 1989; Location and characterization of two functions on RP1 that inhibit the fertility of the IncW plasmid R388. J Gen Microbiol 135:499–502
    [Google Scholar]
  21. Gaffney T. D., Lessie T. G. 1987; Insertion-sequence-dependent rearrangements of Pseudomonas cepacia plasmid pTGL1. J Bacteriol 169:224–230
    [Google Scholar]
  22. Gonzalez C. F., Pettit E. A., Valadez V. A., Provin E. M. 1997; Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia ( Pseudomonas) cepacia . Mol Plant Microbe Interact 10:840–851
    [Google Scholar]
  23. Guo M., Jin S., Sun D., Hew C. L., Pan S. Q. 2007; Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus. Proc Natl Acad Sci U S A 104:20019–20024
    [Google Scholar]
  24. Hamilton C. M., Lee H., Li P. L., Cook D. M., Piper K. R., von Bodman S. B., Lanka E., Ream W., Farrand S. K. 2000; TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182:1541–1548
    [Google Scholar]
  25. Hansen J. B., Olsen R. H. 1978; Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J Bacteriol 135:227–238
    [Google Scholar]
  26. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  27. Holden M. T., Seth-Smith H. M., Crossman L. C., Sebaihia M., Bentley S. D., Cerdeño-Tárraga A. M., Thomson N. R., Bason N., Quail M. A. other authors 2009; The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191:261–277
    [Google Scholar]
  28. Jones K. M., Lloret J., Daniele J. R., Walker G. C. 2007; The type IV secretion system of Sinorhizobium meliloti strain 1021 is required for conjugation but not for intracellular symbiosis. J Bacteriol 189:2133–2138
    [Google Scholar]
  29. Juhas M., Crook D. W., Dimopoulou I. D., Lunter G., Harding R. M., Ferguson D. J. P., Hood D. W. 2007; Novel type IV secretion system involved in propagation of genomic islands. J Bacteriol 189:761–771
    [Google Scholar]
  30. Kostakioti M., Newman C. L., Thanassi D. G., Stathopoulos C. 2005; Mechanisms of protein export across the bacterial outer membrane. J Bacteriol 187:4306–4314
    [Google Scholar]
  31. Labes M., Puhler A., Simon R. 1990; A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene 89:37–46
    [Google Scholar]
  32. Lee L. Y., Gelvin S. B. 2004; Osa protein constitutes a strong oncogenic suppression system that can block vir-dependent transfer of IncQ plasmids between Agrobacterium cells and the establishment of IncQ plasmids in plant cells. J Bacteriol 186:7254–7261
    [Google Scholar]
  33. Lee L. Y., Gelvin S. B., Kado C. I. 1999; pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export. J Bacteriol 181:186–196
    [Google Scholar]
  34. Li P. L., Everhart D. M., Farrand S. K. 1998; Genetic and sequence analysis of the pTiC58 trb locus, encoding a mating-pair formation system related to members of the type IV secretion family. J Bacteriol 180:6164–6172
    [Google Scholar]
  35. Li P. L., Hwang I., Miyagi H., True H., Farrand S. K. 1999; Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181:5033–5041
    [Google Scholar]
  36. LiPuma J. J. 1998a; Burkholderia cepacia epidemiology and pathogenesis: implications for infection control. Curr Opin Pulm Med 4:337–341
    [Google Scholar]
  37. LiPuma J. J. 1998b; Burkholderia cepacia. Management issues and new insights. Clin Chest Med 19:473–486
    [Google Scholar]
  38. LiPuma J. J. 2003; Burkholderia cepacia complex as human pathogens. J Nematol 35:212–217
    [Google Scholar]
  39. Llosa M., Zunzunegui S., de la Cruz F. 2003; Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A 100:10465–10470
    [Google Scholar]
  40. Macnab R. M. 1999; The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol 181:7149–7153
    [Google Scholar]
  41. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913
    [Google Scholar]
  42. Nagai H., Cambronne E. D., Kagan J. C., Amor J. C., Kahn R. A., Roy C. R. 2005; A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102:826–831
    [Google Scholar]
  43. O'Callaghan D., Cazevieille C., Allardet-Servent A., Boschiroli M. L., Bourg G., Foulongne V., Frutos P., Kulakov Y., Ramuz M. 1999; A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis . Mol Microbiol 33:1210–1220
    [Google Scholar]
  44. Plano G. V., Day J. B., Ferracci F. 2001; Type III export: new uses for an old pathway. Mol Microbiol 40:284–293
    [Google Scholar]
  45. Sajjan S. U., Carmody L. A., Gonzalez C. F., LiPuma J. J. 2008; A type IV secretion system contributes to intracellular survival and replication of Burkholderia cenocepacia . Infect Immun 76:5447–5455
    [Google Scholar]
  46. Schell M. A., Ulrich R. L., Ribot W. J., Brueggemann E. E., Hines H. B., Chen D., Lipscomb L., Kim H. S., Mrázek J. other authors 2007; Type VI secretion is a major virulence determinant in Burkholderia mallei . Mol Microbiol 64:1466–1485
    [Google Scholar]
  47. Schröder G., Lanka E. 2005; The mating pair formation system of conjugative plasmids – a versatile secretion machinery for transfer of proteins and DNA. Plasmid 54:1–25
    [Google Scholar]
  48. Schulein R., Dehio C. 2002; The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol Microbiol 46:1053–1067
    [Google Scholar]
  49. Schulein R., Guye P., Rhomberg T. A., Schmid M. C., Schroder G., Vergunst A. C., Carena I., Dehio C. 2005; A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A 102:856–861
    [Google Scholar]
  50. Segal G., Shuman H. A. 1998; Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30:197–208
    [Google Scholar]
  51. Segal G., Purcell M., Shuman H. A. 1998; Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95:1669–1674
    [Google Scholar]
  52. Segal G., Russo J. J., Shuman H. A. 1999; Relationships between a new type IV secretion system and the icm/ dot virulence system of Legionella pneumophila . Mol Microbiol 34:799–809
    [Google Scholar]
  53. Simone M., McCullen C. A., Stahl L. E., Binns A. N. 2001; The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41:1283–1293
    [Google Scholar]
  54. Sokol P. A., Darling P., Woods D. E., Mahenthiralingam E., Kooi C. 1999; Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding l-ornithine N(5)-oxygenase. Infect Immun 67:4443–4455
    [Google Scholar]
  55. Thanassi D. G., Hultgren S. J. 2000; Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 12:420–430
    [Google Scholar]
  56. Vanlaere E., Coenye T., Samyn E., Van den Plas C., Govan J., De Baets F., De Boeck K., Knoop C., Vandamme P. 2005; A novel strategy for the isolation and identification of environmental Burkholderia cepacia complex bacteria. FEMS Microbiol Lett 249:303–307
    [Google Scholar]
  57. Vergunst A. C., van Lier M. C., den Dulk-Ras A., Stuve T. A., Ouwehand A., Hooykaas P. J. 2005; Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium . Proc Natl Acad Sci U S A 102:832–837
    [Google Scholar]
  58. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  59. Vogel J. P., Andrews H. L., Wong S. K., Isberg R. R. 1998; Conjugative transfer by the virulence system of Legionella pneumophila . Science 279:873–876
    [Google Scholar]
  60. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033043-0
Loading
/content/journal/micro/10.1099/mic.0.033043-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed