1887

Abstract

QseE is a sensor kinase that responds to epinephrine, sulfate and phosphate. QseE constitutes a two-component signalling system together with the QseF -dependent response regulator. Encoded within the same operon as is the gene, which encodes a membrane protein involved in the translocation of a type III secretion effector protein of enterohaemorrhagic (EHEC) into epithelial cells. The genes also form an operon with the gene, which encodes the nitrogen sensor PII protein. Here we report a transcriptome analysis comparing , and single mutants with the wild-type strain. This study revealed that the proteins encoded by these genes play a modest but significant role in iron uptake. Although QseEFG regulate genes involved in nitrogen utilization, these proteins do not play a notable role in nitrogen metabolism. In addition, QseEFG regulate transcription of the and two-component systems, linking several signal transduction pathways. The similarity of the microarray profiles of these mutants also indicates that these proteins work together. These data indicate that QseEFG are involved in the regulation of virulence and metabolism in EHEC.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033027-0
2010-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1167.html?itemId=/content/journal/micro/10.1099/mic.0.033027-0&mimeType=html&fmt=ahah

References

  1. Anonymous. 1997; Applied Biosystems Prism 7700 Sequence Detection System: User Bulletin #2 Norwalk, CT: Perkin-Elmer Corp;
  2. Bader M. W., Sanowar S., Daley M. E., Schneider A. R., Cho U., Xu W., Klevit R. E., Le Moual H., Miller S. I.. 2005; Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell122:461–472
    [Google Scholar]
  3. Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P.. 2003; A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics19:185–193
    [Google Scholar]
  4. Campellone K. G., Robbins D., Leong J. M.. 2004; EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell7:217–228
    [Google Scholar]
  5. Cheng H. C., Skehan B. M., Campellone K. G., Leong J. M., Rosen M. K.. 2008; Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU. Nature454:1009–1013
    [Google Scholar]
  6. Clemmer K. M., Rather P. N.. 2007; Regulation of flhDC expression in Proteus mirabilis. Res Microbiol158:295–302
    [Google Scholar]
  7. Deng W., Puente J. L., Gruenheid S., Li Y., Vallance B. A., Vázquez A., Barba J., Ibarra J. A., O'Donnell P.. other authors 2004; Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A101:3597–3602
    [Google Scholar]
  8. Elliott S. J., Wainwright L. A., McDaniel T. K., Jarvis K. G., Deng Y. K., Lai L. C., McNamara B. P., Donnenberg M. S., Kaper J. B.. 1998; The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol28:1–4
    [Google Scholar]
  9. Garmendia J., Phillips A. D., Carlier M. F., Chong Y., Schüller S., Marches O., Dahan S., Oswald E., Shaw R. K.. other authors 2004; TccP is an enterohaemorrhagic Escherichia coli O157 : H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol6:1167–1183
    [Google Scholar]
  10. Griffin P. M., Ostroff S. M., Tauxe R. V., Greene K. D., Wells J. G., Lewis J. H., Blake P. A.. 1988; Illnesses associated with Escherichia coli O157 : H7 infections. A broad clinical spectrum. Ann Intern Med109:705–712
    [Google Scholar]
  11. Groisman E. A., Mouslim C.. 2006; Sensing by bacterial regulatory systems in host and non-host environments. Nat Rev Microbiol4:705–709
    [Google Scholar]
  12. Hantash F. M., Earhart C. F.. 2000; Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF. J Bacteriol182:1768–1773
    [Google Scholar]
  13. Hoch J. A.. 2000; Two-component and phosphorelay signal transduction. Curr Opin Microbiol3:165–170
    [Google Scholar]
  14. Irizarry R. A., Hobbs B., Collin F., Beazer-Barclay Y. D., Antonellis K. J., Scherf U., Speed T. P.. 2003; Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics4:249–264
    [Google Scholar]
  15. Jarvis K. G., Giron J. A., Jerse A. E., McDaniel T. K., Donnenberg M. S., Kaper J. B.. 1995; Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A92:7996–8000
    [Google Scholar]
  16. Jerse A. E., Yu J., Tall B. D., Kaper J. B.. 1990; A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A87:7839–7843
    [Google Scholar]
  17. Kaper J. B., Nataro J. P., Mobley H. L.. 2004; Pathogenic Escherichia coli. Nat Rev Microbiol2:123–140
    [Google Scholar]
  18. Kenny B., DeVinney R., Stein M., Reinscheid D. J., Frey E. A., Finlay B. B.. 1997; Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell91:511–520
    [Google Scholar]
  19. Laub M. T., Goulian M.. 2007; Specificity in two-component signal transduction pathways. Annu Rev Genet41:121–145
    [Google Scholar]
  20. McDaniel T. K., Jarvis K. G., Donnenberg M. S., Kaper J. B.. 1995; A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A92:1664–1668
    [Google Scholar]
  21. Mizuno T.. 1997; Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res4:161–168
    [Google Scholar]
  22. Murray G. L., Attridge S. R., Morona R.. 2003; Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol47:1395–1406
    [Google Scholar]
  23. Ninfa A. J., Atkinson M. R.. 2000; PII signal transduction proteins. Trends Microbiol8:172–179
    [Google Scholar]
  24. Ninfa A. J., Jiang P.. 2005; PII signal transduction proteins: sensors of α-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol8:168–173
    [Google Scholar]
  25. Ninfa A. J., Jiang P., Atkinson M. R., Peliska J. A.. 2000; Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. Curr Top Cell Regul36:31–75
    [Google Scholar]
  26. Otto K., Silhavy T. J.. 2002; Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A99:2287–2292
    [Google Scholar]
  27. Ozenberger B. A., Nahlik M. S., McIntosh M. A.. 1987; Genetic organization of multiple fep genes encoding ferric enterobactin transport functions in Escherichia coli. J Bacteriol169:3638–3646
    [Google Scholar]
  28. Reading N. C., Torres A. G., Kendall M. M., Hughes D. T., Yamamoto K., Sperandio V.. 2007; A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol189:2468–2476
    [Google Scholar]
  29. Reading N. C., Rasko D. A., Torres A. G., Sperandio V.. 2009; The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci U S A106:5889–5894
    [Google Scholar]
  30. Reichenbach B., Gopel Y., Gorke B.. 2009; Dual control by perfectly overlapping σ54- and σ70- promoters adjusts small RNA GlmY expression to different environmental signals. Mol Microbiol74:1054–1070
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  32. Smith J. N., Dyszel J. L., Soares J. A., Ellermeier C. D., Altier C., Lawhon S. D., Adams L. G., Konjufca V., Curtiss R. III. other authors 2008; SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles. PLoS One3:e2826
    [Google Scholar]
  33. Throup J. P., Koretke K. K., Bryant A. P., Ingraham K. A., Chalker A. F., Ge Y., Marra A., Wallis N. G., Brown J. R.. other authors 2000; A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol35:566–576
    [Google Scholar]
  34. Tobe T., Ando H., Ishikawa H., Abe H., Tashiro K., Hayashi T., Kuhara S., Sugimoto N.. 2005; Dual regulatory pathways integrating the RcsC–RcsD–RcsB signalling system control enterohaemorrhagic Escherichia coli pathogenicity. Mol Microbiol58:320–333
    [Google Scholar]
  35. Tobe T., Beatson S. A., Taniguchi H., Abe H., Bailey C. M., Fivian A., Younis R., Matthews S., Marches O.. other authors 2006; An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A103:14941–14946
    [Google Scholar]
  36. Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., Ishihama A.. 2005; Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem280:1448–1456
    [Google Scholar]
  37. Zahrt T. C., Deretic V.. 2001; Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci U S A98:12706–12711
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033027-0
Loading
/content/journal/micro/10.1099/mic.0.033027-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error