1887

Abstract

Disulfide bond formation in periplasmic proteins is catalysed by the DsbA/DsbB system in most Gram-negative bacteria. serovar Typhimurium also encodes a paralogous pair of proteins to DsbA and DsbB, DsbL and DsbI, respectively, downstream of a periplasmic arylsulfate sulfotransferase (ASST). We show that DsbL and DsbI function as a redox pair contributing to periplasmic disulfide bond formation and, as such, affect transcription of the pathogenicity island 1 (SPI1) type three secretion system genes and activation of the RcsCDB system, as well as ASST activity. In contrast to DsbA/DsbB, however, the DsbL/DsbI system cannot catalyse the disulfide bond formation required for flagellar assembly. Phylogenic analysis suggests that the genes are ancestral in the , but have been lost in many lineages. Deletion of confers no virulence defect during acute infection of mice.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032904-0
2009-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4014.html?itemId=/content/journal/micro/10.1099/mic.0.032904-0&mimeType=html&fmt=ahah

References

  1. Bajaj, V., Hwang, C. & Lee, C. A. ( 1995; ). HilA is a novel OmpR/ToxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol 18, 715–727.[CrossRef]
    [Google Scholar]
  2. Bardwell, J. C., McGovern, K. & Beckwith, J. ( 1991; ). Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589.[CrossRef]
    [Google Scholar]
  3. Bouwman, C. W., Kohli, M., Killoran, A., Touchie, G. A., Kadner, R. J. & Martin, N. L. ( 2003; ). Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae. J Bacteriol 185, 991–1000.[CrossRef]
    [Google Scholar]
  4. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  5. Collet, J. F. & Bardwell, J. C. ( 2002; ). Oxidative protein folding in bacteria. Mol Microbiol 44, 1–8.[CrossRef]
    [Google Scholar]
  6. Dailey, F. E. & Berg, H. C. ( 1993; ). Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci U S A 90, 1043–1047.[CrossRef]
    [Google Scholar]
  7. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  8. Ellermeier, C. D. & Slauch, J. M. ( 2004; ). RtsA coordinately regulates DsbA and the Salmonella pathogenicity island 1 type III secretion system. J Bacteriol 186, 68–79.[CrossRef]
    [Google Scholar]
  9. Ellermeier, C. D., Janakiraman, A. & Slauch, J. M. ( 2002; ). Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290, 153–161.[CrossRef]
    [Google Scholar]
  10. Ellermeier, C. D., Ellermeier, J. R. & Slauch, J. M. ( 2005; ). HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 57, 691–705.[CrossRef]
    [Google Scholar]
  11. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. ( 2003; ). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47, 103–118.
    [Google Scholar]
  12. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  13. Godlewska, R., Dzwonek, A., Mikula, M., Ostrowski, J., Pawlowski, M., Bujnicki, J. M. & Jagusztyn-Krynicka, E. K. ( 2006; ). Helicobacter pylori protein oxidation influences the colonization process. Int J Med Microbiol 296, 321–324.[CrossRef]
    [Google Scholar]
  14. Grimshaw, J. P., Stirnimann, C. U., Brozzo, M. S., Malojcic, G., Grutter, M. G., Capitani, G. & Glockshuber, R. ( 2008; ). DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J Mol Biol 380, 667–680.[CrossRef]
    [Google Scholar]
  15. Ha, U. H., Wang, Y. & Jin, S. ( 2003; ). DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect Immun 71, 1590–1595.[CrossRef]
    [Google Scholar]
  16. Haldimann, A. & Wanner, B. L. ( 2001; ). Conditional-replication, integration, excision, and retrieval plasmid–host systems for gene structure–function studies of bacteria. J Bacteriol 183, 6384–6393.[CrossRef]
    [Google Scholar]
  17. Inaba, K. & Ito, K. ( 2008; ). Structure and mechanisms of the DsbB–DsbA disulfide bond generation machine. Biochim Biophys Acta 1783, 520–529.[CrossRef]
    [Google Scholar]
  18. Jackson, M. W. & Plano, G. V. ( 1999; ). DsbA is required for stable expression of outer membrane protein YscC and for efficient Yop secretion in Yersinia pestis. J Bacteriol 181, 5126–5130.
    [Google Scholar]
  19. Kadokura, H., Katzen, F. & Beckwith, J. ( 2003; ). Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72, 111–135.[CrossRef]
    [Google Scholar]
  20. Kim, D. H., Yoon, H. K., Koizumi, M. & Kobashi, K. ( 1992; ). Sulfation of phenolic antibiotics by sulfotransferase obtained from a human intestinal bacterium. Chem Pharm Bull (Tokyo) 40, 1056–1057.[CrossRef]
    [Google Scholar]
  21. Kimball, R. A., Martin, L. & Saier, M. H., Jr ( 2003; ). Reversing transmembrane electron flow: the DsbD and DsbB protein families. J Mol Microbiol Biotechnol 5, 133–149.[CrossRef]
    [Google Scholar]
  22. Kobashi, K., Kim, D. H. & Morikawa, T. ( 1987; ). A novel type of arylsulfotransferase. J Protein Chem 6, 237–244.
    [Google Scholar]
  23. Kwon, A. R. & Choi, E. C. ( 2005; ). Role of disulfide bond of arylsulfate sulfotransferase in the catalytic activity. Arch Pharm Res 28, 561–565.[CrossRef]
    [Google Scholar]
  24. Kwon, A. R., Yun, H. J. & Choi, E. C. ( 2001; ). Kinetic mechanism and identification of the active site tyrosine residue in Enterobacter amnigenus arylsulfate sulfotransferase. Biochem Biophys Res Commun 285, 526–529.[CrossRef]
    [Google Scholar]
  25. Lawley, T. D., Chan, K., Thompson, L. J., Kim, C. C., Govoni, G. R. & Monack, D. M. ( 2006; ). Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2, e11 [CrossRef]
    [Google Scholar]
  26. Lin, D., Rao, C. V. & Slauch, J. M. ( 2008; ). The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol 190, 87–97.[CrossRef]
    [Google Scholar]
  27. Lloyd, A. L., Rasko, D. A. & Mobley, H. L. ( 2007; ). Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189, 3532–3546.[CrossRef]
    [Google Scholar]
  28. Majdalani, N. & Gottesman, S. ( 2005; ). The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59, 379–405.[CrossRef]
    [Google Scholar]
  29. Malojcić, G., Owen, R. L., Grimshaw, J. P., Brozzo, M. S., Dreher-Teo, H. & Glockshuber, R. ( 2008; ). A structural and biochemical basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 105, 19217–19222.[CrossRef]
    [Google Scholar]
  30. Maloy, S. R., Stewart, V. J. & Taylor, R. K. ( 1996; ). Genetic Analysis of Pathogenic Bacteria: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Mann, B. A. & Slauch, J. M. ( 1997; ). Transduction of low-copy number plasmids by bacteriophage P22. Genetics 146, 447–456.
    [Google Scholar]
  32. McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M. & other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  33. Miki, T., Okada, N. & Danbara, H. ( 2004; ). Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J Biol Chem 279, 34631–34642.[CrossRef]
    [Google Scholar]
  34. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. ( 1974; ). Culture medium for enterobacteria. J Bacteriol 119, 736–747.
    [Google Scholar]
  35. Peek, J. A. & Taylor, R. K. ( 1992; ). Characterization of a periplasmic thiol : disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci U S A 89, 6210–6214.[CrossRef]
    [Google Scholar]
  36. Raczko, A. M., Bujnicki, J. M., Pawlowski, M., Godlewska, R., Lewandowska, M. & Jagusztyn-Krynicka, E. K. ( 2005; ). Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology 151, 219–231.[CrossRef]
    [Google Scholar]
  37. Silhavy, T. J., Berman, M. L. & Enquist, L. W. ( 1984; ). Experiments with Gene Fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Slauch, J. M. & Silhavy, T. J. ( 1991; ). cis-acting ompF mutations that result in OmpR-dependent constitutive expression. J Bacteriol 173, 4039–4048.
    [Google Scholar]
  39. Snyder, J. A., Haugen, B. J., Buckles, E. L., Lockatell, C. V., Johnson, D. E., Donnenberg, M. S., Welch, R. A. & Mobley, H. L. ( 2004; ). Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72, 6373–6381.[CrossRef]
    [Google Scholar]
  40. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  41. Vernikos, G. S., Thomson, N. R. & Parkhill, J. ( 2007; ). Genetic flux over time in the Salmonella lineage. Genome Biol 8, R100 [CrossRef]
    [Google Scholar]
  42. Walters, M. & Sperandio, V. ( 2006; ). Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol 296, 125–131.
    [Google Scholar]
  43. Wang, R. F. & Kushner, S. R. ( 1991; ). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100, 195–199.[CrossRef]
    [Google Scholar]
  44. Watarai, M., Tobe, T., Yoshikawa, M. & Sasakawa, C. ( 1995; ). Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells. Proc Natl Acad Sci U S A 92, 4927–4931.[CrossRef]
    [Google Scholar]
  45. Wilgenbusch, J. C. & Swofford, D. ( 2003; ). Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics Chapter 6, Unit 6.4
    [Google Scholar]
  46. Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G. & Court, D. L. ( 2000; ). An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97, 5978–5983.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032904-0
Loading
/content/journal/micro/10.1099/mic.0.032904-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error