1887

Abstract

The BpeAB-OprB resistance-nodulation-division (RND) family pump effluxes aminoglycoside and macrolide antibiotics as well as acylhomoserine lactones (AHLs) involved in quorum sensing. Expression of was cell density-dependent and was inducible in the presence of these compounds. Intracellular levels of spermidine and -acetylspermidine increased with cell density in wild-type KHW, but were always lower in the pump mutant at all growth phases. The significance of changes in intracellular spermidine on efflux pump expression was demonstrated by the disruption of the binding of the BpeR repressor protein to the regulatory region in the presence of increasing spermidine concentrations. This was supported by dose-dependent activation of transcription in the presence of exogenous spermidine and -acetylspermidine, thus implicating the involvement of the BpeAB-OprB pump in spermidine homeostasis in . Consequently, inhibition of intracellular spermidine synthesis reduced the efflux of AHLs by BpeAB-OprB. Other potential therapeutic applications of spermidine synthase inhibitors include the reduction of swimming motility and biofilm formation by .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032888-0
2010-04-01
2024-11-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1144.html?itemId=/content/journal/micro/10.1099/mic.0.032888-0&mimeType=html&fmt=ahah

References

  1. Canellakis E. S., Viceps-Madore D., Kyriakidis D. A., Heller J. S. 1979; The regulation and function of ornithine decarboxylase and of the polyamines. Curr Top Cell Regul 15:155–202
    [Google Scholar]
  2. Carper S. W., Willis D. G., Manning K. A., Gerner E. W. 1991; Spermidine acetylation in response to a variety of stresses in Escherichia coli. J Biol Chem 266:12439–12441
    [Google Scholar]
  3. Chan Y. Y., Chua K. L. 2005; The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol 187:4707–4719
    [Google Scholar]
  4. Chan Y. Y., Tan T. M., Ong Y. M., Chua K. L. 2004; BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother 48:1128–1135
    [Google Scholar]
  5. Chan Y. Y., Bian H. S., Tan T. M., Mattmann M. E., Geske G. D., Igarashi J., Hatano T., Suga H., Blackwell H. E., Chua K. L. 2007; Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol 189:4320–4324
    [Google Scholar]
  6. Cheng A. C., Currie B. J. 2005; Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18:383–416
    [Google Scholar]
  7. Clark D., Maaløe O. 1967; DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112
    [Google Scholar]
  8. Fried M., Crothers D. M. 1981; Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525
    [Google Scholar]
  9. Fukuchi J., Kashiwagi K., Yamagishi M., Ishihama A., Igarashi K. 1995; Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem 270:18831–18835
    [Google Scholar]
  10. Ha H. C., Sirisoma N. S., Kuppusamy P., Zweier J. L., Woster P. M., Casero R. A. Jr 1998; The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A 95:11140–11145
    [Google Scholar]
  11. Huang S. C., Panagiotidis C. A., Canellakis E. S. 1990; Transcriptional effects of polyamines on ribosomal proteins and on polyamine-synthesizing enzymes in Escherichia coli. Proc Natl Acad Sci U S A 87:3464–3468
    [Google Scholar]
  12. Hwang D. F., Chang S. H., Shiua C. Y., Chai T. 1997; High-performance liquid chromatographic determination of biogenic amines in fish implicated in food poisoning. J Chromatogr B Biomed Sci Appl 693:23–29
    [Google Scholar]
  13. Igarashi K., Kashiwagi K. 2000; Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564
    [Google Scholar]
  14. Igarashi K., Kashiwagi K. 2006; Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem 139:11–16
    [Google Scholar]
  15. Jung I. L., Kim I. G. 2003a; Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem Biophys Res Commun 301:915–922
    [Google Scholar]
  16. Jung I. L., Kim I. G. 2003b; Polyamines and glutamate decarboxylase-based acid resistance in Escherichia coli. J Biol Chem 278:22846–22852
    [Google Scholar]
  17. Kakegawa T., Guo Y., Chiba Y., Miyazaki T., Nakamura M., Hirose S., Canellakis Z. N., Igarashi K. 1991; Effect of acetylpolyamines on in vitro protein synthesis and on the growth of a polyamine-requiring mutant of Escherichia coli. J Biochem 109:627–631
    [Google Scholar]
  18. Karahalios P., Mamos P., Vynios D. H., Papaioannou D., Kalpaxis D. L. 1998; The effect of acylated polyamine derivatives on polyamine uptake mechanism, cell growth, and polyamine pools in Escherichia coli, and the pursuit of structure/activity relationships. Eur J Biochem 251:998–1004
    [Google Scholar]
  19. Karatan E., Duncan T. R., Watnick P. I. 2005; NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187:7434–7443
    [Google Scholar]
  20. Khan A. U., Di Mascio P., Medeiros M. H., Wilson T. 1992; Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc Natl Acad Sci U S A 89:11428–11430
    [Google Scholar]
  21. Kumar A., Chua K. L., Schweizer H. P. 2006; Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Antimicrob Agents Chemother 50:3460–3463
    [Google Scholar]
  22. Kwon D. H., Lu C. D. 2006; Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 50:1615–1622
    [Google Scholar]
  23. Limsuwun K., Jones P. G. 2000; Spermidine acetyltransferase is required to prevent spermidine toxicity at low temperatures in Escherichia coli. J Bacteriol 182:5373–5380
    [Google Scholar]
  24. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  25. Moore R. A., DeShazer D., Reckseidler S., Weissman A., Woods D. E. 1999; Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 43:465–470
    [Google Scholar]
  26. O'Toole G. A., Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461
    [Google Scholar]
  27. Paulin L., Lindberg L. A., Poso H. 1986; Reversible inhibition of flagella formation after specific inhibition of spermidine synthesis by dicyclohexylamine in Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 52:483–490
    [Google Scholar]
  28. Pearson J. P., Van Delden C., Iglewski B. H. 1999; Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210
    [Google Scholar]
  29. Pegg A. E., Bitonti A. J., McCann P. P., Coward J. K. 1983; Inhibition of bacterial aminopropyltransferases by S-adenosyl-1,8-diamino-3-thiooctane and by dicyclohexylamine. FEBS Lett 155:192–196
    [Google Scholar]
  30. Seiler N. 1987; Functions of polyamine acetylation. Can J Physiol Pharmacol 65:2024–2035
    [Google Scholar]
  31. Tabor C. W., Tabor H. 1985; Polyamines in microorganisms. Microbiol Rev 49:81–99
    [Google Scholar]
  32. White N. J. 2003; Melioidosis. Lancet 361:1715–1722
    [Google Scholar]
  33. Yoshida M., Meksuriyen D., Kashiwagi K., Kawai G., Igarashi K. 1999; Polyamine stimulation of the synthesis of oligopeptide-binding protein (OppA). Involvement of a structural change of the Shine–Dalgarno sequence and the initiation codon AUG in Oppa mRNA. J Biol Chem 274:22723–22728
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.032888-0
Loading
/content/journal/micro/10.1099/mic.0.032888-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error